Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
Converting in decimals
\newline
5
7
=
\frac{5}{7}=
7
5
=
Get tutor help
g)
25
a
5
a
b
=
\frac{25 a}{5 a b}=
5
ab
25
a
=
Get tutor help
Which two expressions are equivalent?
\newline
A.
4
(
2
+
x
)
4
⋅
2
+
4
⋅
x
4(2+x) \\ \quad 4 \cdot 2 + 4 \cdot x
4
(
2
+
x
)
4
⋅
2
+
4
⋅
x
\newline
B.
4
+
2
+
x
(
4
+
2
)
+
x
4+2+x \\ \quad (4+2)+x
4
+
2
+
x
(
4
+
2
)
+
x
\newline
C.
4
⋅
x
+
2
4
⋅
(
x
+
2
)
4 \cdot x+2 \\ \quad 4 \cdot (x+2)
4
⋅
x
+
2
4
⋅
(
x
+
2
)
\newline
D.
4
÷
(
2
−
x
)
4
−
2
÷
x
4 \div(2-x) \\ \quad 4 - 2 \div x
4
÷
(
2
−
x
)
4
−
2
÷
x
Get tutor help
Simplify
2
x
−
{
[
(
2
x
−
6
y
−
3
x
)
−
(
5
y
−
2
x
)
−
9
y
]
−
3
x
}
2 x-\{[(2 x-6 y-3 x)-(5 y-2 x)-9 y]-3 x\}
2
x
−
{[(
2
x
−
6
y
−
3
x
)
−
(
5
y
−
2
x
)
−
9
y
]
−
3
x
}
Get tutor help
FIND
x
,
y
,
z
−
3
3
+
4
y
=
1
x
−
z
3
x
+
y
−
1
=
−
z
−
1
6
z
5
y
+
8
=
−
1
\begin{array}{l}\text { FIND } x, y, z \\ -\frac{3}{3+4 y}=\frac{1}{x-z} \\ \frac{3}{x+y-1}=-z^{-1} \\ \frac{6 z}{5 y+8}=-1\end{array}
FIND
x
,
y
,
z
−
3
+
4
y
3
=
x
−
z
1
x
+
y
−
1
3
=
−
z
−
1
5
y
+
8
6
z
=
−
1
Get tutor help
Perform the operation and express your answer as a single fraction in simplest form.
\newline
4
+
1
3
x
4+\frac{1}{3 x}
4
+
3
x
1
\newline
Answer:
Get tutor help
Simplify the fraction completely. If the fraction does not simplify, submit the fraction in its current form.
\newline
6
x
4
7
x
3
\frac{6 x^{4}}{7 x^{3}}
7
x
3
6
x
4
\newline
Answer:
Get tutor help
Simplify the fraction completely. If the fraction does not simplify, submit the fraction in its current form.
\newline
24
x
2
30
\frac{24 x^{2}}{30}
30
24
x
2
\newline
Answer:
Get tutor help
Given the definitions of
f
(
x
)
f(x)
f
(
x
)
and
g
(
x
)
g(x)
g
(
x
)
below, find the value of
f
(
g
(
−
2
)
)
f(g(-2))
f
(
g
(
−
2
))
.
\newline
f
(
x
)
=
3
x
2
+
x
+
7
g
(
x
)
=
2
x
+
8
\begin{array}{l} f(x)=3 x^{2}+x+7 \\ g(x)=2 x+8 \end{array}
f
(
x
)
=
3
x
2
+
x
+
7
g
(
x
)
=
2
x
+
8
\newline
Answer:
Get tutor help
Simplify the following fraction:
50
75
\frac{50}{75}
75
50
\newline
Answer:
Get tutor help
Simplify the following fraction:
24
88
\frac{24}{88}
88
24
\newline
Answer:
Get tutor help
Simplify the following fraction:
24
60
\frac{24}{60}
60
24
\newline
Answer:
Get tutor help
Simplify the following fraction:
42
90
\frac{42}{90}
90
42
\newline
Answer:
Get tutor help
Simplify the following fraction:
25
50
\frac{25}{50}
50
25
\newline
Answer:
Get tutor help
Simplify the following fraction:
33
55
\frac{33}{55}
55
33
\newline
Answer:
Get tutor help
Simplify the following fraction:
25
100
\frac{25}{100}
100
25
\newline
Answer:
Get tutor help
Simplify the following fraction:
20
35
\frac{20}{35}
35
20
\newline
Answer:
Get tutor help
Simplify the following fraction:
40
90
\frac{40}{90}
90
40
\newline
Answer:
Get tutor help
Simplify the following fraction:
30
40
\frac{30}{40}
40
30
\newline
Answer:
Get tutor help
Simplify the following fraction:
56
88
\frac{56}{88}
88
56
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
1
−
6
i
)
(
6
−
3
i
)
(1-6 i)(6-3 i)
(
1
−
6
i
)
(
6
−
3
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
3
+
5
i
)
2
(-3+5 i)^{2}
(
−
3
+
5
i
)
2
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
7
+
2
i
)
(
−
8
−
3
i
)
(7+2 i)(-8-3 i)
(
7
+
2
i
)
(
−
8
−
3
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
3
−
i
)
2
(-3-i)^{2}
(
−
3
−
i
)
2
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
1
−
4
i
)
(
2
+
8
i
)
(-1-4 i)(2+8 i)
(
−
1
−
4
i
)
(
2
+
8
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
2
−
7
i
)
(
5
−
7
i
)
(2-7 i)(5-7 i)
(
2
−
7
i
)
(
5
−
7
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
1
+
7
i
)
(
11
+
8
i
)
(1+7 i)(11+8 i)
(
1
+
7
i
)
(
11
+
8
i
)
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
10
+
2
i
)
2
(10+2 i)^{2}
(
10
+
2
i
)
2
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
11
+
8
i
)
2
(11+8 i)^{2}
(
11
+
8
i
)
2
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
−
9
+
2
i
)
2
(-9+2 i)^{2}
(
−
9
+
2
i
)
2
\newline
Answer:
Get tutor help
Simplify the expression to a + bi form:
\newline
(
6
−
5
i
)
2
(6-5 i)^{2}
(
6
−
5
i
)
2
\newline
Answer:
Get tutor help
Express as a complex number in simplest a+bi form:
\newline
4
−
2
i
9
−
8
i
\frac{4-2 i}{9-8 i}
9
−
8
i
4
−
2
i
\newline
Answer:
Get tutor help
Express as a complex number in simplest a+bi form:
\newline
−
17
+
3
i
7
−
10
i
\frac{-17+3 i}{7-10 i}
7
−
10
i
−
17
+
3
i
\newline
Answer:
Get tutor help
Express as a complex number in simplest a+bi form:
\newline
8
+
3
i
−
9
−
7
i
\frac{8+3 i}{-9-7 i}
−
9
−
7
i
8
+
3
i
\newline
Answer:
Get tutor help
Express as a complex number in simplest a+bi form:
\newline
−
8
+
i
9
+
10
i
\frac{-8+i}{9+10 i}
9
+
10
i
−
8
+
i
\newline
Answer:
Get tutor help
Express as a complex number in simplest a+bi form:
\newline
−
10
+
6
i
5
−
7
i
\frac{-10+6 i}{5-7 i}
5
−
7
i
−
10
+
6
i
\newline
Answer:
Get tutor help
Express as a complex number in simplest a+bi form:
\newline
9
−
7
i
−
3
−
2
i
\frac{9-7 i}{-3-2 i}
−
3
−
2
i
9
−
7
i
\newline
Answer:
Get tutor help
Simplify the expression:
\newline
2
(
2
c
)
=
2(2c) =
2
(
2
c
)
=
_____
Get tutor help
Simplify the expression:
\newline
(
2
z
)
(
3
)
=
(2z)(3) =
(
2
z
)
(
3
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
t
)
=
2(2t) =
2
(
2
t
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
3
x
)
=
2(3x) =
2
(
3
x
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
2
d
)
=
2(2d) =
2
(
2
d
)
=
_____
Get tutor help
Simplify the expression:
\newline
5
(
5
p
)
5(5p)
5
(
5
p
)
Get tutor help
Simplify the expression:
\newline
(
4
c
)
(
5
)
=
(4c)(5) =
(
4
c
)
(
5
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
3
z
)
=
2(3z) =
2
(
3
z
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
2
z
)
=
3(2z) =
3
(
2
z
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
3
k
)
=
3(3k) =
3
(
3
k
)
=
_____
Get tutor help
Simplify the expression:
\newline
3
(
3
n
)
=
3(3n) =
3
(
3
n
)
=
_____
Get tutor help
Simplify the expression:
\newline
2
(
6
m
)
=
2(6m) =
2
(
6
m
)
=
_____
Get tutor help
Simplify the expression:
\newline
7
(
2
v
)
=
7(2v) =
7
(
2
v
)
=
_____
Get tutor help
Previous
1
2
3
...
6
Next