Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(8+3i)/(-9-7i)
Answer:

Express as a complex number in simplest a+bi form:\newline8+3i97i \frac{8+3 i}{-9-7 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline8+3i97i \frac{8+3 i}{-9-7 i} \newlineAnswer:
  1. Multiply by Conjugate: To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator. The conjugate of a complex number a+bia + bi is abia - bi. So, the conjugate of 97i-9 - 7i is 9+7i-9 + 7i.
  2. Multiply Numerator and Denominator: Now, we multiply both the numerator and the denominator by the conjugate of the denominator: \newlineegin{equation}(88 + 33i) * (9-9 + 77i) / ((9-9 - 77i) * (9-9 + 77i))\newlineegin{equation}
  3. Expand Numerator: First, we'll multiply out the numerators using the distributive property (FOIL method): \newline(8×9)+(8×7i)+(3i×9)+(3i×7i)(8 \times -9) + (8 \times 7i) + (3i \times -9) + (3i \times 7i)
  4. Calculate Numerator: Now, we calculate each term:\newline7256i27i+21i2-72 - 56i - 27i + 21i^2\newlineRemembering that i2=1i^2 = -1, we substitute 1-1 for i2i^2:\newline7256i27i21-72 - 56i - 27i - 21
  5. Combine Like Terms: Combine like terms in the numerator:\newline722156i27i-72 - 21 - 56i - 27i\newline9383i-93 - 83i
  6. Expand Denominators: Now, we'll multiply out the denominators:\newline(9×9)+(9×7i)+(7i×9)+(7i×7i)(-9 \times -9) + (-9 \times 7i) + (-7i \times -9) + (-7i \times 7i)
  7. Calculate Denominator: Calculate each term in the denominator:\newline8163i+63i49i281 - 63i + 63i - 49i^2\newlineAgain, substituting 1-1 for i2i^2:\newline8149(1)81 - 49(-1)
  8. Simplify Denominator: Simplify the denominator: 81+49=13081 + 49 = 130
  9. Simplified Fraction: Now we have the simplified numerator and denominator: 9383i130\frac{-93 - 83i}{130}
  10. Divide Real and Imaginary Parts: Divide both the real part and the imaginary part of the numerator by the denominator:\newline9313083i130-\frac{93}{130} - \frac{83i}{130}
  11. Final Answer: Simplify both fractions to get the final answer in a+bia + bi form:\newline9313083i130-\frac{93}{130} - \frac{83i}{130}

More problems from Simplify variable expressions using properties