Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-3-i)^(2)
Answer:

Simplify the expression to a + bi form:\newline(3i)2 (-3-i)^{2} \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(3i)2 (-3-i)^{2} \newlineAnswer:
  1. Write Expression: Write down the expression to be simplified.\newlineWe need to square the complex number (3i)(-3 - i).\newline(3i)2(-3 - i)^{2}
  2. Apply Formula: Apply the formula (ab)2=a22ab+b2(a - b)^2 = a^2 - 2ab + b^2 to the complex number, where a=3a = -3 and b=ib = i.(3i)2=(3)22(3)(i)+(i)2(-3 - i)^2 = (-3)^2 - 2(-3)(i) + (i)^2
  3. Calculate Terms: Calculate each term separately.\newline(3)2=9(-3)^2 = 9\newline2(3)(i)=6i2(-3)(i) = -6i\newline(i)2=1(i)^2 = -1 (since i2=1i^2 = -1)
  4. Substitute Values: Substitute the calculated values back into the expression. (3i)2=9(6i)1(-3 - i)^2 = 9 - (-6i) - 1
  5. Simplify Expression: Simplify the expression by combining like terms. 9(6i)1=9+6i19 - (-6i) - 1 = 9 + 6i - 1
  6. Combine Real and Imaginary Parts: Combine the real parts and the imaginary parts.\newline9+6i1=(91)+6i9 + 6i - 1 = (9 - 1) + 6i\newline8+6i8 + 6i

More problems from Simplify variable expressions using properties