Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-1-4i)(2+8i)
Answer:

Simplify the expression to a + bi form:\newline(14i)(2+8i) (-1-4 i)(2+8 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(14i)(2+8i) (-1-4 i)(2+8 i) \newlineAnswer:
  1. Distribute Terms: Distribute each term in the first complex number by each term in the second complex number.\newline(14i)(2+8i)=(1×2)+(1×8i)+(4i×2)+(4i×8i)(-1-4i)(2+8i) = (-1 \times 2) + (-1 \times 8i) + (-4i \times 2) + (-4i \times 8i)
  2. Perform Multiplication: Perform the multiplication for each term.\newline(1×2)=2(-1 \times 2) = -2\newline(1×8i)=8i(-1 \times 8i) = -8i\newline(4i×2)=8i(-4i \times 2) = -8i\newline(4i×8i)=32i2(-4i \times 8i) = -32i^2 (Remember that i2=1i^2 = -1)
  3. Substitute and Combine: Substitute i2i^2 with 1-1 and combine like terms.\newline2+(8i)+(8i)+(32×1)-2 + (-8i) + (-8i) + (-32 \times -1)\newline28i8i+32-2 - 8i - 8i + 32
  4. Combine Real and Imaginary: Combine the real parts and the imaginary parts.\newlineReal part: 2+32=30-2 + 32 = 30\newlineImaginary part: 8i8i=16i-8i - 8i = -16i
  5. Final Answer: Write the final answer in a+bia + bi form.\newline3016i30 - 16i

More problems from Simplify variable expressions using properties