Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(10+2i)^(2)
Answer:

Simplify the expression to a + bi form:\newline(10+2i)2 (10+2 i)^{2} \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(10+2i)2 (10+2 i)^{2} \newlineAnswer:
  1. Apply formula: First, we need to apply the formula (a+bi)2=a2+2abib2(a + bi)^2 = a^2 + 2abi - b^2, where a=10a = 10 and b=2ib = 2i.\newlineCalculation: (10+2i)2=102+2×10×2i+(2i)2(10 + 2i)^2 = 10^2 + 2 \times 10 \times 2i + (2i)^2
  2. Calculate parts: Now, we calculate each part of the expression separately.\newlineCalculation: 102=10010^2 = 100, 2×10×2i=40i2 \times 10 \times 2i = 40i, and (2i)2=(22)(i2)=4×(1)=4(2i)^2 = (2^2)(i^2) = 4 \times (-1) = -4, since i2=1i^2 = -1.
  3. Combine calculated parts: Combine the calculated parts to get the simplified expression.\newlineCalculation: 100+40i4=(1004)+40i=96+40i100 + 40i - 4 = (100 - 4) + 40i = 96 + 40i

More problems from Simplify variable expressions using properties