Resources
Testimonials
Plans
Sign in
Sign up
Resources
Testimonials
Plans
AI tutor
Welcome to Bytelearn!
Let’s check out your problem:
Simplify the expression to a + bi form:
\newline
(
−
3
+
5
i
)
2
(-3+5 i)^{2}
(
−
3
+
5
i
)
2
\newline
Answer:
View step-by-step help
Home
Math Problems
Algebra 2
Simplify variable expressions using properties
Full solution
Q.
Simplify the expression to a + bi form:
\newline
(
−
3
+
5
i
)
2
(-3+5 i)^{2}
(
−
3
+
5
i
)
2
\newline
Answer:
Expand Expression:
Expand the expression
(
−
3
+
5
i
)
2
(-3+5i)^{2}
(
−
3
+
5
i
)
2
using the formula
(
a
+
b
)
2
=
a
2
+
2
a
b
+
b
2
(a+b)^2 = a^2 + 2ab + b^2
(
a
+
b
)
2
=
a
2
+
2
ab
+
b
2
, where
a
=
−
3
a = -3
a
=
−
3
and
b
=
5
i
b = 5i
b
=
5
i
.
(
−
3
+
5
i
)
2
=
(
−
3
)
2
+
2
∗
(
−
3
)
∗
5
i
+
(
5
i
)
2
(-3+5i)^{2} = (-3)^2 + 2*(-3)*5i + (5i)^2
(
−
3
+
5
i
)
2
=
(
−
3
)
2
+
2
∗
(
−
3
)
∗
5
i
+
(
5
i
)
2
Calculate Terms:
Calculate each term separately.
\newline
(
−
3
)
2
=
9
(-3)^2 = 9
(
−
3
)
2
=
9
\newline
2
∗
(
−
3
)
∗
5
i
=
−
30
i
2*(-3)*5i = -30i
2
∗
(
−
3
)
∗
5
i
=
−
30
i
\newline
(
5
i
)
2
=
25
i
2
(5i)^2 = 25i^2
(
5
i
)
2
=
25
i
2
Simplify
i
2
i^2
i
2
Term:
Remember that
i
2
=
−
1
i^2 = -1
i
2
=
−
1
, so we can simplify the term with
i
2
i^2
i
2
.
\newline
25
i
2
=
25
∗
(
−
1
)
=
−
25
25i^2 = 25*(-1) = -25
25
i
2
=
25
∗
(
−
1
)
=
−
25
Combine Terms:
Combine all the terms to get the final expression.
9
−
30
i
−
25
9 - 30i - 25
9
−
30
i
−
25
Final Expression:
Simplify the expression by combining like terms.
9
−
25
=
−
16
9 - 25 = -16
9
−
25
=
−
16
So, the final expression is
−
16
−
30
i
-16 - 30i
−
16
−
30
i
.
More problems from Simplify variable expressions using properties
Question
Combine the like terms to create an equivalent expression:
\newline
2
s
+
(
−
4
s
)
=
0
2s+(-4s)=\boxed{\phantom{0}}
2
s
+
(
−
4
s
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
6
p
)
=
□
-4p+(-6p)=\square
−
4
p
+
(
−
6
p
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
4
z
−
(
−
3
z
)
=
□
4z-(-3z)=\square
4
z
−
(
−
3
z
)
=
□
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
r
+
(
−
5
r
)
=
0
r+(-5r)=\boxed{\phantom{0}}
r
+
(
−
5
r
)
=
0
Get tutor help
Posted 1 year ago
Question
Combine the like terms to create an equivalent expression:
\newline
−
4
p
+
(
−
2
)
+
2
p
+
3
=
-4p+(-2)+2p+3=
−
4
p
+
(
−
2
)
+
2
p
+
3
=
Get tutor help
Posted 1 year ago
Question
Rewrite the expression in the form
k
⋅
z
n
k \cdot z^{n}
k
⋅
z
n
.
\newline
Write the exponent as an integer, fraction, or an exact decimal (not a mixed number).
\newline
3
z
4
⋅
3
z
3
4
=
3 \sqrt[4]{z} \cdot 3 z^{\frac{3}{4}}=
3
4
z
⋅
3
z
4
3
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
3
x
y=3^{x}
y
=
3
x
.
\newline
Find
d
2
y
d
x
2
\frac{d^{2} y}{d x^{2}}
d
x
2
d
2
y
\newline
d
2
y
d
x
2
=
\frac{d^{2} y}{d x^{2}}=
d
x
2
d
2
y
=
Get tutor help
Posted 1 year ago
Question
Let
y
=
4
x
2
+
3
x
2
x
−
7
y=\frac{4 x^{2}+3 x}{2 x-7}
y
=
2
x
−
7
4
x
2
+
3
x
.
\newline
d
y
d
x
=
\frac{d y}{d x}=
d
x
d
y
=
Get tutor help
Posted 1 year ago
Question
d
d
x
(
e
x
cos
(
x
)
)
=
\frac{d}{d x}\left(\frac{e^{x}}{\cos (x)}\right)=
d
x
d
(
c
o
s
(
x
)
e
x
)
=
Get tutor help
Posted 10 months ago
Question
Let
f
(
x
)
=
1
x
2
f(x)=\frac{1}{x^{2}}
f
(
x
)
=
x
2
1
.
\newline
f
′
(
5
)
=
f^{\prime}(5)=
f
′
(
5
)
=
Get tutor help
Posted 1 year ago
Related topics
Algebra - Order of Operations
Algebra - Distributive Property
`X` and `Y` Axes
Geometry - Scalene Triangle
Common Multiple
Geometry - Quadrant