Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(-3+5i)^(2)
Answer:

Simplify the expression to a + bi form:\newline(3+5i)2 (-3+5 i)^{2} \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(3+5i)2 (-3+5 i)^{2} \newlineAnswer:
  1. Expand Expression: Expand the expression (3+5i)2(-3+5i)^{2} using the formula (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2, where a=3a = -3 and b=5ib = 5i.(3+5i)2=(3)2+2(3)5i+(5i)2(-3+5i)^{2} = (-3)^2 + 2*(-3)*5i + (5i)^2
  2. Calculate Terms: Calculate each term separately.\newline(3)2=9(-3)^2 = 9\newline2(3)5i=30i2*(-3)*5i = -30i\newline(5i)2=25i2(5i)^2 = 25i^2
  3. Simplify i2i^2 Term: Remember that i2=1i^2 = -1, so we can simplify the term with i2i^2.\newline25i2=25(1)=2525i^2 = 25*(-1) = -25
  4. Combine Terms: Combine all the terms to get the final expression. 930i259 - 30i - 25
  5. Final Expression: Simplify the expression by combining like terms. 925=169 - 25 = -16 So, the final expression is 1630i-16 - 30i.

More problems from Simplify variable expressions using properties