Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(1+7i)(11+8i)
Answer:

Simplify the expression to a + bi form:\newline(1+7i)(11+8i) (1+7 i)(11+8 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(1+7i)(11+8i) (1+7 i)(11+8 i) \newlineAnswer:
  1. Distribute Terms: Distribute each term in the first complex number by each term in the second complex number.\newline(1+7i)(11+8i)=1×(11+8i)+7i×(11+8i)(1+7i)(11+8i) = 1\times(11+8i) + 7i\times(11+8i)
  2. Multiply Parts: Multiply the real parts and the imaginary parts separately.\newline1(11+8i)=11+8i1*(11+8i) = 11 + 8i\newline7i(11+8i)=77i+56i27i*(11+8i) = 77i + 56i^2\newlineSince i2=1i^2 = -1, replace i2i^2 with 1-1.\newline77i+56(1)=77i5677i + 56(-1) = 77i - 56
  3. Replace i2i^2: Combine the real parts and the imaginary parts.\newline(11+8i)+(77i56)=1156+8i+77i(11 + 8i) + (77i - 56) = 11 - 56 + 8i + 77i
  4. Combine Parts: Simplify the expression by adding the real parts and the imaginary parts. 1156+8i+77i=45+85i11 - 56 + 8i + 77i = -45 + 85i

More problems from Simplify variable expressions using properties