Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Which two expressions are equivalent?
A. {:[4(2+x)],[4*2+4*x]:}
B. {:[4+2+x],[(4+2)+x]:}
C. {:[4*x+2],[4*(x+2)]:}
D. {:[4÷(2-x)],[4-2÷x]:}

Which two expressions are equivalent?\newlineA. 4(2+x)42+4x 4(2+x) \\ \quad 4 \cdot 2 + 4 \cdot x \newlineB. 4+2+x(4+2)+x4+2+x \\ \quad (4+2)+x\newlineC. 4x+24(x+2) 4 \cdot x+2 \\ \quad 4 \cdot (x+2) \newlineD. 4÷(2x)42÷x 4 \div(2-x) \\ \quad 4 - 2 \div x

Full solution

Q. Which two expressions are equivalent?\newlineA. 4(2+x)42+4x 4(2+x) \\ \quad 4 \cdot 2 + 4 \cdot x \newlineB. 4+2+x(4+2)+x4+2+x \\ \quad (4+2)+x\newlineC. 4x+24(x+2) 4 \cdot x+2 \\ \quad 4 \cdot (x+2) \newlineD. 4÷(2x)42÷x 4 \div(2-x) \\ \quad 4 - 2 \div x
  1. Analyze option A: First, let's analyze option A: 4(2+x)4(2+|x|). This expression means 44 times the sum of 22 and the absolute value of xx. To simplify, we distribute the 44 across the terms inside the parentheses.\newlineCalculation: 4(2)+4(x)=8+4x4(2) + 4(|x|) = 8 + 4|x|
  2. Look at option B: Now let's look at option B, which is presented in a matrix form. This is likely a typographical error, as expressions are not typically presented in a matrix. However, we can interpret the middle row as the intended expression: (4+2)+x(4+2)+x. Simplifying this expression, we combine the like terms.\newlineCalculation: (4+2)+x=6+x(4+2)+x = 6+x
  3. Examine option C: Next, we examine option C: 4x+24x+2. This expression is simply the product of 44 and xx, plus 22. There is no distribution or simplification needed.\newlineCalculation: 4x+24x + 2 remains as it is.
  4. Consider option D: Option D is 4÷(2x)4\div(2-x). This expression involves division and cannot be simplified to a form similar to the previous options without further information about xx.\newlineCalculation: 4÷(2x)4\div(2-x) remains as it is.
  5. Analyze expression 4(x+2)4*(x+2): Finally, we have the expression 4(x+2)4*(x+2). This expression means 44 times the sum of xx and 22. To simplify, we distribute the 44 across the terms inside the parentheses.\newlineCalculation: 4(x)+4(2)=4x+84*(x) + 4*(2) = 4x + 8
  6. Analyze expression 4×(x+2)4\times(x+2): Finally, we have the expression 4×(x+2)4\times(x+2). This expression means 44 times the sum of xx and 22. To simplify, we distribute the 44 across the terms inside the parentheses.\newlineCalculation: 4×(x)+4×(2)=4x+84\times(x) + 4\times(2) = 4x + 8Now, let's compare the simplified forms of all options to find the equivalent expressions:\newlineA: 8+4x8 + 4\mid x\mid\newlineB: 6+x6+x\newlineC: 4x+24x+2\newlineD: 4×(x+2)4\times(x+2)00\newlineE: 4×(x+2)4\times(x+2)11\newlineWe can see that none of the options are equivalent to each other. Each expression has different terms or operations involved.

More problems from Simplify variable expressions using properties