Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(2-7i)(5-7i)
Answer:

Simplify the expression to a + bi form:\newline(27i)(57i) (2-7 i)(5-7 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(27i)(57i) (2-7 i)(5-7 i) \newlineAnswer:
  1. Distribute Terms: Distribute each term in the first complex number by each term in the second complex number.\newline(27i)(57i)=25+2(7i)+(7i)5+(7i)(7i)(2-7i)(5-7i) = 2\cdot 5 + 2\cdot (-7i) + (-7i)\cdot 5 + (-7i)\cdot (-7i)
  2. Perform Multiplication: Perform the multiplication for each term.\newline2×5=102\times5 = 10\newline2×(7i)=14i2\times(-7i) = -14i\newline(7i)×5=35i(-7i)\times5 = -35i\newline(7i)×(7i)=49i2(-7i)\times(-7i) = 49i^2 (Remember that i2=1i^2 = -1)
  3. Combine Terms: Substitute i2i^2 with 1-1 and combine like terms.\newline10+(14i)+(35i)+49(1)10 + (-14i) + (-35i) + 49(-1)\newline1014i35i4910 - 14i - 35i - 49
  4. Substitute and Combine: Combine the real numbers and the imaginary numbers.\newline(1049)+(14i35i)(10 - 49) + (-14i - 35i)\newline3949i-39 - 49i

More problems from Simplify variable expressions using properties