Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Given the definitions of 
f(x) and 
g(x) below, find the value of 
f(g(-2)).

{:[f(x)=3x^(2)+x+7],[g(x)=2x+8]:}
Answer:

Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(2)) f(g(-2)) .\newlinef(x)=3x2+x+7g(x)=2x+8 \begin{array}{l} f(x)=3 x^{2}+x+7 \\ g(x)=2 x+8 \end{array} \newlineAnswer:

Full solution

Q. Given the definitions of f(x) f(x) and g(x) g(x) below, find the value of f(g(2)) f(g(-2)) .\newlinef(x)=3x2+x+7g(x)=2x+8 \begin{array}{l} f(x)=3 x^{2}+x+7 \\ g(x)=2 x+8 \end{array} \newlineAnswer:
  1. Find g(2)g(-2): First, we need to find the value of g(2)g(-2) by substituting xx with 2-2 in the function g(x)g(x).\newlineCalculation: g(2)=2(2)+8=4+8=4g(-2) = 2(-2) + 8 = -4 + 8 = 4
  2. Substitute into f(x)f(x): Now that we have g(2)=4g(-2) = 4, we substitute this value into the function f(x)f(x) to find f(g(2))f(g(-2)).
    Calculation: f(g(2))=f(4)=3(4)2+4+7=3(16)+4+7=48+4+7=59f(g(-2)) = f(4) = 3(4)^2 + 4 + 7 = 3(16) + 4 + 7 = 48 + 4 + 7 = 59

More problems from Simplify variable expressions using properties