Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Express as a complex number in simplest a+bi form:

(9-7i)/(-3-2i)
Answer:

Express as a complex number in simplest a+bi form:\newline97i32i \frac{9-7 i}{-3-2 i} \newlineAnswer:

Full solution

Q. Express as a complex number in simplest a+bi form:\newline97i32i \frac{9-7 i}{-3-2 i} \newlineAnswer:
  1. Multiply Conjugate: To simplify the expression (97i)/(32i)(9-7i)/(-3-2i), we need to eliminate the complex number in the denominator. We do this by multiplying the numerator and the denominator by the conjugate of the denominator. The conjugate of (32i)(-3-2i) is (3+2i)(-3+2i).
  2. Expand Numerator: Multiply the numerator and the denominator by the conjugate of the denominator: [(97i)(3+2i)]/[(32i)(3+2i)][ (9-7i)(-3+2i) ] / [ (-3-2i)(-3+2i) ].
  3. Expand Denominator: First, we'll expand the numerator using the distributive property (FOIL method): \newline(9×3)+(9×2i)+(7i×3)+(7i×2i)=27+18i+21i14i2.(9 \times -3) + (9 \times 2i) + (-7i \times -3) + (-7i \times 2i) = -27 + 18i + 21i - 14i^2.\newlineSince i2=1i^2 = -1, we can replace 14i2-14i^2 with 1414.\newlineSo, the expanded numerator is 27+18i+21i+14-27 + 18i + 21i + 14.
  4. Simplify Numerator: Now, we'll expand the denominator: (3×3)+(3×2i)+(2i×3)+(2i×2i)=96i+6i4i2(-3 \times -3) + (-3 \times 2i) + (-2i \times -3) + (-2i \times 2i) = 9 - 6i + 6i - 4i^2. Again, since i2=1i^2 = -1, we can replace 4i2-4i^2 with 44. So, the expanded denominator is 9+49 + 4.
  5. Simplify Denominator: Simplify the expanded numerator and denominator:\newlineNumerator: 27+18i+21i+14=13+39i-27 + 18i + 21i + 14 = -13 + 39i.\newlineDenominator: 9+4=139 + 4 = 13.
  6. Divide Numerator: Now, divide the simplified numerator by the simplified denominator: (13+39i)/13(-13 + 39i) / 13.
  7. Divide Real and Imaginary: Divide both the real part and the imaginary part of the numerator by the denominator: (1313)+(39i13)(-\frac{13}{13}) + (\frac{39i}{13}).
  8. Final Simplification: Simplify both parts:\newline1+3i-1 + 3i.\newlineThis is the expression in a+bia+bi form.

More problems from Simplify variable expressions using properties