Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Simplify the expression to a + bi form:

(7+2i)(-8-3i)
Answer:

Simplify the expression to a + bi form:\newline(7+2i)(83i) (7+2 i)(-8-3 i) \newlineAnswer:

Full solution

Q. Simplify the expression to a + bi form:\newline(7+2i)(83i) (7+2 i)(-8-3 i) \newlineAnswer:
  1. Apply Distributive Property: To multiply two complex numbers, we use the distributive property (also known as the FOIL method for binomials), which states that for any complex numbers (a+bi)(a + bi) and (c+di)(c + di), the product is (acbd)+(ad+bc)i(ac - bd) + (ad + bc)i. Let's apply this to (7+2i)(83i)(7 + 2i)(-8 - 3i). First, we multiply the real parts: 7×(8)=567 \times (-8) = -56.
  2. Multiply Real Parts: Next, we multiply the imaginary parts: 2i×(3i)=6i22i \times (-3i) = -6i^2. Since i2=1i^2 = -1, this simplifies to 6×(1)=6-6 \times (-1) = 6.
  3. Multiply Imaginary Parts: Now, we multiply the outer terms: 7×(3i)=21i7 \times (-3i) = -21i.
  4. Multiply Outer Terms: Finally, we multiply the inner terms: 2i×(8)=16i2i \times (-8) = -16i.
  5. Multiply Inner Terms: We combine all these results: (56+6)+(21i16i)(-56 + 6) + (-21i - 16i).
  6. Combine Results: Simplify the real parts and the imaginary parts separately: (56+6)=50(-56 + 6) = -50 and (21i16i)=37i(-21i - 16i) = -37i.
  7. Simplify Real and Imaginary Parts: Combine the simplified real and imaginary parts to get the expression in a+bia + bi form: 5037i-50 - 37i.

More problems from Simplify variable expressions using properties