Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Suppose that sinα=313\sin \alpha=\frac{3}{\sqrt{13}} and 0<α<900^{\circ} < \alpha < 90^{\circ}. Find the exact values of cos(α2)\cos \left(\frac{\alpha}{2}\right) and tan(α2)\tan \left(\frac{\alpha}{2}\right). cos(α2)=\cos \left(\frac{\alpha}{2}\right)= tan(α2)=\tan \left(\frac{\alpha}{2}\right)=

Full solution

Q. Suppose that sinα=313\sin \alpha=\frac{3}{\sqrt{13}} and 0<α<900^{\circ} < \alpha < 90^{\circ}. Find the exact values of cos(α2)\cos \left(\frac{\alpha}{2}\right) and tan(α2)\tan \left(\frac{\alpha}{2}\right). cos(α2)=\cos \left(\frac{\alpha}{2}\right)= tan(α2)=\tan \left(\frac{\alpha}{2}\right)=
  1. Given information: We are given that sin(α)=313\sin(\alpha) = \frac{3}{\sqrt{13}} and α\alpha is in the first quadrant 0<α<900^\circ < \alpha < 90^\circ. To find cos(α/2)\cos(\alpha/2) and tan(α/2)\tan(\alpha/2), we can use the half-angle formulas for sine and cosine. The half-angle formula for cosine is:\newlinecos(α/2)=±(1+cos(α)2)\cos(\alpha/2) = \pm\sqrt{\left(\frac{1 + \cos(\alpha)}{2}\right)}\newlineSince α\alpha is in the first quadrant, cos(α)\cos(\alpha) will be positive, and so will cos(α/2)\cos(\alpha/2). We need to find cos(α)\cos(\alpha) first.
  2. Find cos(α)\cos(\alpha): To find cos(α)\cos(\alpha), we use the Pythagorean identity:\newlinesin2(α)+cos2(α)=1\sin^2(\alpha) + \cos^2(\alpha) = 1\newline(313)2+cos2(α)=1\left(\frac{3}{\sqrt{13}}\right)^2 + \cos^2(\alpha) = 1\newline913+cos2(α)=1\frac{9}{13} + \cos^2(\alpha) = 1\newlinecos2(α)=1913\cos^2(\alpha) = 1 - \frac{9}{13}\newlinecos2(α)=413\cos^2(\alpha) = \frac{4}{13}\newlinecos(α)=±413\cos(\alpha) = \pm\sqrt{\frac{4}{13}}\newlineSince α\alpha is in the first quadrant, cos(α)\cos(\alpha) is positive, so cos(α)\cos(\alpha)00.
  3. Find cos(α/2)\cos(\alpha/2): Now we can find cos(α/2)\cos(\alpha/2) using the half-angle formula:\newlinecos(α/2)=(1+cos(α))/2\cos(\alpha/2) = \sqrt{(1 + \cos(\alpha))/2}\newlinecos(α/2)=(1+2/13)/2\cos(\alpha/2) = \sqrt{(1 + 2/\sqrt{13})/2}\newlinecos(α/2)=(13+2)/213\cos(\alpha/2) = \sqrt{(\sqrt{13} + 2)/2\sqrt{13}}\newlinecos(α/2)=(13+2)/(213)\cos(\alpha/2) = \sqrt{(\sqrt{13} + 2)/(2\sqrt{13})}\newlinecos(α/2)=((13+2)13)/(21313)\cos(\alpha/2) = \sqrt{((\sqrt{13} + 2)\sqrt{13})/(2\sqrt{13}\sqrt{13})}\newlinecos(α/2)=((13+2)13/26)\cos(\alpha/2) = \sqrt{((\sqrt{13} + 2)\sqrt{13}/26)}\newlinecos(α/2)=(13+213)/26\cos(\alpha/2) = \sqrt{(13 + 2\sqrt{13})/26}\newlinecos(α/2)=(13+213)/26\cos(\alpha/2) = \sqrt{(13 + 2\sqrt{13})/26}
  4. Find tan(α/2)\tan(\alpha/2): Next, we find tan(α/2)\tan(\alpha/2) using the half-angle formula for tangent, which is:\newlinetan(α/2)=±(1cos(α))/(1+cos(α))\tan(\alpha/2) = \pm\sqrt{(1 - \cos(\alpha))/(1 + \cos(\alpha))}\newlineSince α\alpha is in the first quadrant, tan(α/2)\tan(\alpha/2) will also be positive. We already found cos(α)=213\cos(\alpha) = \frac{2}{\sqrt{13}}, so we can substitute it into the formula:\newlinetan(α/2)=(1213)/(1+213)\tan(\alpha/2) = \sqrt{(1 - \frac{2}{\sqrt{13}})/(1 + \frac{2}{\sqrt{13}})}\newlinetan(α/2)=(132)/(13+2)\tan(\alpha/2) = \sqrt{(\sqrt{13} - 2)/(\sqrt{13} + 2)}\newlinetan(α/2)=(132)13/(13+2)13\tan(\alpha/2) = \sqrt{(\sqrt{13} - 2)\sqrt{13}/(\sqrt{13} + 2)\sqrt{13}}\newlinetan(α/2)=(13213)/(13+213)\tan(\alpha/2) = \sqrt{(13 - 2\sqrt{13})/(13 + 2\sqrt{13})}\newlinetan(α/2)=(13213)/(13+213)\tan(\alpha/2) = \sqrt{(13 - 2\sqrt{13})/(13 + 2\sqrt{13})}

More problems from Evaluate an exponential function