Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Revolve the region bounded by 
y=e^(x), the 
x-axis, 
x=0, and 
x=1 about the line 
y=4. Find the volume.

V=[?]

Revolve the region bounded by y=ex y=e^{x} , the x x -axis, x=0 x=0 , and x=1 x=1 about the line y=4 y=4 . Find the volume.\newlineV=[?] V=[?]

Full solution

Q. Revolve the region bounded by y=ex y=e^{x} , the x x -axis, x=0 x=0 , and x=1 x=1 about the line y=4 y=4 . Find the volume.\newlineV=[?] V=[?]
  1. Set up integral for volume: First, we need to set up the integral for the volume using the disk method since we're revolving around a horizontal line. The volume of a solid of revolution is given by the integral of π(outer radius2inner radius2)\pi(\text{outer radius}^2 - \text{inner radius}^2) from aa to bb.
  2. Determine outer and inner radius: The outer radius is the distance from y=4y=4 to y=exy=e^{x}, which is 4ex4 - e^{x}. The inner radius is 00 because the region is bounded by the x-axis (y=0y=0). So, we only need to consider the outer radius.
  3. Calculate volume integral: Now we set up the integral: V=π01(4ex)2dxV = \pi \int_{0}^{1} (4 - e^{x})^2 \, dx. This will give us the volume of the solid.
  4. Expand and simplify expression: We need to expand (4ex)2(4 - e^{x})^2 to (168ex+e2x)(16 - 8e^{x} + e^{2x}) before integrating.
  5. Integrate term by term: Now we integrate: V=π[0116dx018exdx+01e2xdx]V = \pi \cdot [\int_{0}^{1} 16 \, dx - \int_{0}^{1} 8e^{x} \, dx + \int_{0}^{1} e^{2x} \, dx].
  6. Evaluate limits of integration: Integrating term by term, we get V=π[16x8ex+(12)e2x]V = \pi \cdot [16x - 8e^{x} + (\frac{1}{2})e^{2x}] evaluated from 00 to 11.
  7. Simplify the expression: Plugging in the limits of integration, we get V=π[(1618e1+(1/2)e21)(1608e0+(1/2)e20)]V = \pi \cdot [(16\cdot 1 - 8e^{1} + (1/2)e^{2\cdot 1}) - (16\cdot 0 - 8e^{0} + (1/2)e^{2\cdot 0})].
  8. Combine like terms: Simplify the expression: V=π[168e+(12)e2(081+(12)1)]V = \pi \cdot [16 - 8e + (\frac{1}{2})e^2 - (0 - 8\cdot 1 + (\frac{1}{2})\cdot 1)].
  9. Calculate numerical value: Further simplification gives us V=π[168e+(12)e28+(12)]V = \pi \cdot [16 - 8e + (\frac{1}{2})e^2 - 8 + (\frac{1}{2})].
  10. Calculate numerical value: Further simplification gives us V=π×[168e+(12)e28+(12)]V = \pi \times [16 - 8e + (\frac{1}{2})e^2 - 8 + (\frac{1}{2})].Combine like terms: V=π×[88e+(12)e2+(12)]V = \pi \times [8 - 8e + (\frac{1}{2})e^2 + (\frac{1}{2})].
  11. Calculate numerical value: Further simplification gives us V=π×[168e+(1/2)e28+(1/2)]V = \pi \times [16 - 8e + (1/2)e^2 - 8 + (1/2)].Combine like terms: V=π×[88e+(1/2)e2+(1/2)]V = \pi \times [8 - 8e + (1/2)e^2 + (1/2)].Now we calculate the numerical value: V=π×[88×2.71828+(1/2)×2.718282+(1/2)]V = \pi \times [8 - 8\times2.71828 + (1/2)\times2.71828^2 + (1/2)].

More problems from Find equations of tangent lines using limits