Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

lim_(x rarr+oo)-x+ln(1+xe^(x))=+oo

limx+x+ln(1+xex)=+ \lim _{x \rightarrow+\infty}-x+\ln \left(1+x e^{x}\right)=+\infty

Full solution

Q. limx+x+ln(1+xex)=+ \lim _{x \rightarrow+\infty}-x+\ln \left(1+x e^{x}\right)=+\infty
  1. Simplify Inside Logarithm: Simplify the expression inside the logarithm:\newlineGiven x+ln(1+xex)-x + \ln(1 + x\cdot e^x), focus on the term inside the logarithm 1+xex1 + x\cdot e^x. As xx approaches infinity, exe^x grows much faster than xx, making xexx\cdot e^x the dominant term. Thus, 1+xex1 + x\cdot e^x approximates to xexx\cdot e^x.
  2. Substitute Simplified Expression: Substitute the simplified expression back: Replace 1+xex1 + x e^x with xexx e^x in the original limit expression, getting x+ln(xex)-x + \ln(x e^x).
  3. Apply Logarithmic Properties: Apply properties of logarithms:\newlineUsing the logarithmic identity ln(ab)=ln(a)+ln(b)\ln(ab) = \ln(a) + \ln(b), rewrite ln(xex)\ln(xe^x) as ln(x)+ln(ex)\ln(x) + \ln(e^x). Since ln(ex)=x\ln(e^x) = x, the expression becomes x+ln(x)+x-x + \ln(x) + x.
  4. Simplify Final Expression: Simplify the expression:\newlineThe terms x-x and xx cancel each other out, leaving ln(x)\ln(x). As xx approaches infinity, ln(x)\ln(x) also approaches infinity.

More problems from Sum of finite series starts from 1