Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Let 
h(x)=ln(x)cos(x).

h^(')(x)=

Let h(x)=ln(x)cos(x) h(x)=\ln (x) \cos (x) .\newlineh(x)= h^{\prime}(x)=

Full solution

Q. Let h(x)=ln(x)cos(x) h(x)=\ln (x) \cos (x) .\newlineh(x)= h^{\prime}(x)=
  1. Use Product Rule: We need to use the product rule to differentiate h(x)=ln(x)cos(x)h(x) = \ln(x)\cos(x), which states that (fg)=fg+fg(fg)' = f'g + fg'. Let's differentiate ln(x)\ln(x) and cos(x)\cos(x) separately.
  2. Differentiate ln(x)\ln(x): Differentiate ln(x)\ln(x) to get 1x\frac{1}{x}.
  3. Differentiate cos(x)\cos(x): Differentiate cos(x)\cos(x) to get sin(x)-\sin(x).
  4. Apply Product Rule: Now apply the product rule: h(x)=(ln(x))(cos(x))+(ln(x))(cos(x))h'(x) = (\ln(x))'(\cos(x)) + (\ln(x))(\cos(x))'.
  5. Substitute Derivatives: Substitute the derivatives into the product rule: h(x)=(1x)(cos(x))+ln(x)(sin(x))h'(x) = (\frac{1}{x})(\cos(x)) + \ln(x)(-\sin(x)).
  6. Simplify Expression: Simplify the expression: h(x)=cos(x)xln(x)sin(x)h'(x) = \frac{\cos(x)}{x} - \ln(x)\sin(x).

More problems from Evaluate functions