Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

For the function 
f(x)=|3x-9|, evaluate the left and right limits of 
f(x) as 
x approaches 2 .
a. 
lim_(x rarr2^(-))f(x)
b. 
lim_(x rarr2^(+))f(x)

22. For the function f(x)=3x9 f(x)=|3 x-9| , evaluate the left and right limits of f(x) f(x) as x x approaches 22 .\newlinea. limx2f(x) \lim _{x \rightarrow 2^{-}} f(x) \newlineb. limx2+f(x) \lim _{x \rightarrow 2^{+}} f(x)

Full solution

Q. 22. For the function f(x)=3x9 f(x)=|3 x-9| , evaluate the left and right limits of f(x) f(x) as x x approaches 22 .\newlinea. limx2f(x) \lim _{x \rightarrow 2^{-}} f(x) \newlineb. limx2+f(x) \lim _{x \rightarrow 2^{+}} f(x)
  1. Consider Values Less Than 22: To find the left-hand limit as xx approaches 22, we need to consider the values of xx that are just less than 22. For these values, the expression inside the absolute value, 3x93x - 9, will be negative because 3(2)9=69=33(2) - 9 = 6 - 9 = -3. Therefore, the absolute value function will negate the inside expression to make it positive.
  2. Write Left-Hand Limit Expression: We can write the expression for the left-hand limit as: \newlinelimx2f(x)=limx23x9\lim_{x \rightarrow 2^{-}}f(x) = \lim_{x \rightarrow 2^{-}}|3x - 9|\newlineSince 3x93x - 9 is negative when xx is just less than 22, we can remove the absolute value by negating the expression inside:\newlinelimx2f(x)=limx2(3x9)\lim_{x \rightarrow 2^{-}}f(x) = \lim_{x \rightarrow 2^{-}}-(3x - 9)
  3. Evaluate Left-Hand Limit: Now we can evaluate the limit by substituting xx with a value just less than 22:limx2f(x)=(3(2)9)=(69)=(3)=3\lim_{x \rightarrow 2^{-}}f(x) = -(3(2) - 9) = -(6 - 9) = -(-3) = 3
  4. Consider Values Greater Than 22: To find the right-hand limit as xx approaches 22, we need to consider the values of xx that are just greater than 22. For these values, the expression inside the absolute value, 3x93x - 9, will be negative or positive depending on whether xx is closer to 22 or further away. However, since we are considering values just greater than 22, the expression 3x93x - 9 will still be negative because 3(2)9=69=33(2) - 9 = 6 - 9 = -3. Therefore, the absolute value function will negate the inside expression to make it positive.
  5. Write Right-Hand Limit Expression: We can write the expression for the right-hand limit as: \newlinelimx2+f(x)=limx2+3x9\lim_{x \rightarrow 2^{+}}f(x) = \lim_{x \rightarrow 2^{+}}|3x - 9|\newlineSince 3x93x - 9 is negative when xx is just greater than 22, we can remove the absolute value by negating the expression inside:\newlinelimx2+f(x)=limx2+(3x9)\lim_{x \rightarrow 2^{+}}f(x) = \lim_{x \rightarrow 2^{+}}-(3x - 9)
  6. Evaluate Right-Hand Limit: Now we can evaluate the limit by substituting xx with a value just greater than 22:limx2+f(x)=(3(2)9)=(69)=(3)=3\lim_{x \rightarrow 2^{+}}f(x) = -(3(2) - 9) = -(6 - 9) = -(-3) = 3

More problems from Reflections of functions