Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the area of the surface.
the part of the hyperbolic paraboloid 
z=y^(2)-x^(2) that lies between the cylinders 
x^(2)+y^(2)=4 and 
x^(2)+y^(2)=16

Find the area of the surface.\newlinethe part of the hyperbolic paraboloid z=y2x2 z=y^{2}-x^{2} that lies between the cylinders x2+y2=4 x^{2}+y^{2}=4 and x2+y2=16 x^{2}+y^{2}=16

Full solution

Q. Find the area of the surface.\newlinethe part of the hyperbolic paraboloid z=y2x2 z=y^{2}-x^{2} that lies between the cylinders x2+y2=4 x^{2}+y^{2}=4 and x2+y2=16 x^{2}+y^{2}=16
  1. Surface Area Integral Formula: To find the surface area, we'll use the surface area integral for z=f(x,y)z = f(x, y). The formula is 1+(dzdx)2+(dzdy)2dA\int\int\sqrt{1 + \left(\frac{dz}{dx}\right)^2 + \left(\frac{dz}{dy}\right)^2} dA, where dAdA is the differential area element in the xy-plane.
  2. Calculate Partial Derivatives: First, calculate the partial derivatives dzdx\frac{dz}{dx} and dzdy\frac{dz}{dy}. For z=y2x2z = y^2 - x^2, dzdx=2x\frac{dz}{dx} = -2x and dzdy=2y\frac{dz}{dy} = 2y.
  3. Plug Derivatives into Formula: Now, plug the derivatives into the formula: 1+(2x)2+(2y)2=1+4x2+4y2\sqrt{1 + (-2x)^2 + (2y)^2} = \sqrt{1 + 4x^2 + 4y^2}.
  4. Use Polar Coordinates: The region of integration is between the circles x2+y2=4x^2 + y^2 = 4 and x2+y2=16x^2 + y^2 = 16. It's easier to use polar coordinates, where x=rcos(θ)x = r\cos(\theta) and y=rsin(θ)y = r\sin(\theta).
  5. Differential Area Element: In polar coordinates, the differential area element dAdA is rdrdθr dr d\theta. The limits for rr are from 22 to 44 (the radii of the circles), and for θ\theta from 00 to 2π2\pi (full circle).
  6. Substitute Polar Coordinates: Substitute xx and yy with polar coordinates in the integrand: 1+4r2cos2(θ)+4r2sin2(θ)=1+4r2\sqrt{1 + 4r^2\cos^2(\theta) + 4r^2\sin^2(\theta)} = \sqrt{1 + 4r^2}.
  7. Set Up Double Integral: Set up the double integral: θ=02πr=24r1+4r2drdθ\int_{\theta=0}^{2\pi} \int_{r=2}^{4} r\sqrt{1 + 4r^2} \, dr \, d\theta.
  8. Integrate with Respect to r: Integrate with respect to r first: r1+4r2dr\int r\sqrt{1 + 4r^2} \, dr. Let u=1+4r2u = 1 + 4r^2, then du=8rdrdu = 8r \, dr. So, 18du=rdr\frac{1}{8} du = r \, dr.
  9. Evaluate Integral for r: The integral becomes 18udu\frac{1}{8} \int \sqrt{u} \, du, which is 1823u32\frac{1}{8} \cdot \frac{2}{3}u^{\frac{3}{2}}. Substitute back for u to get (112)(1+4r2)32\left(\frac{1}{12}\right)(1 + 4r^2)^{\frac{3}{2}}.
  10. Integrate with Respect to θ\theta: Evaluate the integral from r=2r=2 to r=4r=4: 112(1+4(4)2)32112(1+4(2)2)32\frac{1}{12}(1 + 4(4)^2)^{\frac{3}{2}} - \frac{1}{12}(1 + 4(2)^2)^{\frac{3}{2}}.
  11. Multiply by 2π2\pi: Calculate the values: (112)(1+64)32(112)(1+16)32=(112)(65)32(112)(17)32(\frac{1}{12})(1 + 64)^{\frac{3}{2}} - (\frac{1}{12})(1 + 16)^{\frac{3}{2}} = (\frac{1}{12})(65)^{\frac{3}{2}} - (\frac{1}{12})(17)^{\frac{3}{2}}.
  12. Calculate Final Value: Now, integrate with respect to θ\theta from 00 to 2π2\pi. The integral is just 2π2\pi times the result from the rr integration because there's no θ\theta in the integrand.
  13. Simplify the Expression: Multiply by 2π2\pi: 2π×[(112)(65)32(112)(17)32]2\pi \times \left[\left(\frac{1}{12}\right)(65)^{\frac{3}{2}} - \left(\frac{1}{12}\right)(17)^{\frac{3}{2}}\right].
  14. Plug in Values: Calculate the final value: $\(2\)\pi \times \left[\left(\frac{\(1\)}{\(12\)}\right)(\(65\))^{\frac{\(3\)}{\(2\)}} - \left(\frac{\(1\)}{\(12\)}\right)(\(17\))^{\frac{\(3\)}{\(2\)}}\right] = \(2\)\pi \times \left[\frac{(\(65\))^{\frac{\(3\)}{\(2\)}}}{\(12\)} - \frac{(\(17\))^{\frac{\(3\)}{\(2\)}}}{\(12\)}\right].
  15. Final Calculation: Simplify the expression: \(2\pi \times [(65)^{\frac{3}{2}} - (17)^{\frac{3}{2}}] / 12\).
  16. Final Calculation: Simplify the expression: \(2\pi \times [(65)^{\frac{3}{2}} - (17)^{\frac{3}{2}}] / 12\).Plug in the values and calculate the final answer: \(2\pi \times [(65)^{\frac{3}{2}} - (17)^{\frac{3}{2}}] / 12 \approx 2\pi \times [520.9 - 70.1] / 12\).
  17. Final Calculation: Simplify the expression: \(2\pi \times [(65)^{\frac{3}{2}} - (17)^{\frac{3}{2}}] / 12\). Plug in the values and calculate the final answer: \(2\pi \times [(65)^{\frac{3}{2}} - (17)^{\frac{3}{2}}] / 12 \approx 2\pi \times [520.9 - 70.1] / 12\). Final calculation: \(2\pi \times 450.8 / 12 \approx 2\pi \times 37.57 \approx 236.2\pi\).

More problems from Find the axis of symmetry of a parabola