Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Cameron wants to prove the Alternate Interior Angles Theorem. In the diagram, 
PQ^(harr)||RS^(harr)
Complete Cameron's proof that alternate interior angles 
/_PVW and 
/_VWS are congruent.
Construct the midpoint 
M of 
bar(WV), then rotate 
PQ^(harr),RS^(harr), and 
TU^(harr)180^(@) about 
M to get 
P^(')Q^(')^(harr),R^(')S^(')^(harr), and 
T^(')U^(')^(harr). Since 
M lies on 
TU^(harr) and the rotation is 
180^(@),T^(')U^(')^(harr) coincides with 
◻ are equidistant from 
M on 
TU^(harr), so 
V^(') coincides with 
W and 
vec(V^(')W^(')) coincides with 
◻
A 
180^(@) rotation of a line is a parallel line, and the only line parallel to 
PQ^(harr) that passes through 
W is 
◻ Therefore, 
◻ coincide, and 
vec(V^(')P^(')) and 
vec(WS) coincide. So, the rotation maps 
◻
Since rotation 
◻ , 
/_PVW~=/_VWS.

Cameron wants to prove the Alternate Interior Angles Theorem. In the diagram, PQundefinedRSundefined \overleftrightarrow{P Q} \| \overleftrightarrow{R S} \newlineComplete Cameron's proof that alternate interior angles PVW \angle P V W and VWS \angle V W S are congruent.\newlineConstruct the midpoint M M of WV \overline{W V} , then rotate PQundefined,RSundefined \overleftrightarrow{P Q}, \overleftrightarrow{R S} , and TUundefined180 \overleftrightarrow{T U} 180^{\circ} about M M to get PQundefined,RSundefined \overleftrightarrow{P^{\prime} Q^{\prime}}, \overleftrightarrow{R^{\prime} S^{\prime}} , and TUundefined \overleftrightarrow{T^{\prime} U^{\prime}} . Since M M lies on PVW \angle P V W 11 and the rotation is PVW \angle P V W 22 coincides with PVW \angle P V W 33 are equidistant from M M on PVW \angle P V W 11, so PVW \angle P V W 66 coincides with PVW \angle P V W 77 and PVW \angle P V W 88 coincides with PVW \angle P V W 33\newlineA VWS \angle V W S 00 rotation of a line is a parallel line, and the only line parallel to VWS \angle V W S 11 that passes through PVW \angle P V W 77 is PVW \angle P V W 33 Therefore, PVW \angle P V W 33 coincide, and VWS \angle V W S 55 and VWS \angle V W S 66 coincide. So, the rotation maps PVW \angle P V W 33\newlineSince rotation PVW \angle P V W 33 , VWS \angle V W S 99.

Full solution

Q. Cameron wants to prove the Alternate Interior Angles Theorem. In the diagram, PQundefinedRSundefined \overleftrightarrow{P Q} \| \overleftrightarrow{R S} \newlineComplete Cameron's proof that alternate interior angles PVW \angle P V W and VWS \angle V W S are congruent.\newlineConstruct the midpoint M M of WV \overline{W V} , then rotate PQundefined,RSundefined \overleftrightarrow{P Q}, \overleftrightarrow{R S} , and TUundefined180 \overleftrightarrow{T U} 180^{\circ} about M M to get PQundefined,RSundefined \overleftrightarrow{P^{\prime} Q^{\prime}}, \overleftrightarrow{R^{\prime} S^{\prime}} , and TUundefined \overleftrightarrow{T^{\prime} U^{\prime}} . Since M M lies on PVW \angle P V W 11 and the rotation is PVW \angle P V W 22 coincides with PVW \angle P V W 33 are equidistant from M M on PVW \angle P V W 11, so PVW \angle P V W 66 coincides with PVW \angle P V W 77 and PVW \angle P V W 88 coincides with PVW \angle P V W 33\newlineA VWS \angle V W S 00 rotation of a line is a parallel line, and the only line parallel to VWS \angle V W S 11 that passes through PVW \angle P V W 77 is PVW \angle P V W 33 Therefore, PVW \angle P V W 33 coincide, and VWS \angle V W S 55 and VWS \angle V W S 66 coincide. So, the rotation maps PVW \angle P V W 33\newlineSince rotation PVW \angle P V W 33 , VWS \angle V W S 99.
  1. Construct Midpoint M: Construct the midpoint MM of ar{WV}, then rotate PQightarrowPQ^{ ightarrow}, RSightarrowRS^{ ightarrow}, and TUightarrowTU^{ ightarrow} 180ext@180^{ ext{@}} about MM.
  2. Rotate Lines 180180 Degrees: Since MM is the midpoint of ar{WV} and the rotation is 180180^\circ, ar{T'U'}^{\leftrightarrow} will coincide with ar{TU}^{\leftrightarrow}.
  3. Coincidence of Points TT and UU: Points TT and UU are equidistant from MM on TUhundefinedTU^{\overrightarrow{h}}, so VV^{\prime} coincides with WW after the rotation.
  4. Preservation of Vector Length and Orientation: VW\vec{V'}W' coincides with VW\vec{VW} because a 180180^{\circ} rotation preserves the length and orientation of vectors.
  5. Parallel Line to PQ: A 180180^{\circ} rotation of a line is a parallel line, and the only line parallel to PQundefined\overrightarrow{PQ} that passes through WW is RSundefined\overrightarrow{RS}.
  6. Coincidence of Points PP' and Q:Q': Therefore, PQP'^{\prime}Q'^{\prime}^{\leftrightarrow} must coincide with RSRS^{\leftrightarrow} after the rotation.
  7. Preservation of Angles: VP\vec{V^{\prime}P^{\prime}} and WS\vec{WS} coincide, meaning the rotation maps point PP^{\prime} to point SS and point QQ^{\prime} to point RR.
  8. Preservation of Angles: VP\vec{V^{\prime}P^{\prime}} and WS\vec{WS} coincide, meaning the rotation maps point PP^{\prime} to point SS and point QQ^{\prime} to point RR. Since rotation preserves angles, PVW\angle PVW is congruent to VWS\angle VWS because they are images of each other under the 180180^{\circ} rotation.

More problems from Transformations of quadratic functions