Transformations of quadratic functions

Cameron wants to prove the Alternate Interior Angles Theorem. In the diagram, PQundefinedRSundefined \overleftrightarrow{P Q} \| \overleftrightarrow{R S} \newlineComplete Cameron's proof that alternate interior angles PVW \angle P V W and VWS \angle V W S are congruent.\newlineConstruct the midpoint M M of WV \overline{W V} , then rotate PQundefined,RSundefined \overleftrightarrow{P Q}, \overleftrightarrow{R S} , and TUundefined180 \overleftrightarrow{T U} 180^{\circ} about M M to get PQundefined,RSundefined \overleftrightarrow{P^{\prime} Q^{\prime}}, \overleftrightarrow{R^{\prime} S^{\prime}} , and TUundefined \overleftrightarrow{T^{\prime} U^{\prime}} . Since M M lies on PVW \angle P V W 11 and the rotation is PVW \angle P V W 22 coincides with PVW \angle P V W 33 are equidistant from M M on PVW \angle P V W 11, so PVW \angle P V W 66 coincides with PVW \angle P V W 77 and PVW \angle P V W 88 coincides with PVW \angle P V W 33\newlineA VWS \angle V W S 00 rotation of a line is a parallel line, and the only line parallel to VWS \angle V W S 11 that passes through PVW \angle P V W 77 is PVW \angle P V W 33 Therefore, PVW \angle P V W 33 coincide, and VWS \angle V W S 55 and VWS \angle V W S 66 coincide. So, the rotation maps PVW \angle P V W 33\newlineSince rotation PVW \angle P V W 33 , VWS \angle V W S 99.
Get tutor helpright-arrow