Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the solutions of the quadratic equation 
-3x^(2)+4x+1=0.
Choose 1 answer:
(A) 
(2)/(6)∓(sqrt7)/(6)
(B) 
(2)/(6)∓(sqrt7)/(6)i
(c) 
(2)/(3)∓(sqrt7)/(3)i
(D) 
(2)/(3)∓(sqrt7)/(3)

Find the solutions of the quadratic equation 3x2+4x+1=0 -3 x^{2}+4 x+1=0 .\newlineChoose 11 answer:\newline(A) 2676 \frac{2}{6} \mp \frac{\sqrt{7}}{6} \newline(B) 2676i \frac{2}{6} \mp \frac{\sqrt{7}}{6} i \newline(C) 2373i \frac{2}{3} \mp \frac{\sqrt{7}}{3} i \newline(D) 2373 \frac{2}{3} \mp \frac{\sqrt{7}}{3}

Full solution

Q. Find the solutions of the quadratic equation 3x2+4x+1=0 -3 x^{2}+4 x+1=0 .\newlineChoose 11 answer:\newline(A) 2676 \frac{2}{6} \mp \frac{\sqrt{7}}{6} \newline(B) 2676i \frac{2}{6} \mp \frac{\sqrt{7}}{6} i \newline(C) 2373i \frac{2}{3} \mp \frac{\sqrt{7}}{3} i \newline(D) 2373 \frac{2}{3} \mp \frac{\sqrt{7}}{3}
  1. Quadratic Formula: To find the solutions of the quadratic equation 3x2+4x+1=0-3x^{2}+4x+1=0, we can use the quadratic formula, which is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}, where aa, bb, and cc are the coefficients of the terms in the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0.\newlineIn this case, a=3a = -3, b=4b = 4, and c=1c = 1.
  2. Calculating the Discriminant: First, we calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac.\newlineDiscriminant = (4)24(3)(1)=16+12=28(4)^2 - 4(-3)(1) = 16 + 12 = 28.
  3. Determining the Number of Solutions: Since the discriminant is positive, we will have two real solutions.\newlineNow we can apply the quadratic formula:\newlinex=4±282(3)x = \frac{{-4 \pm \sqrt{28}}}{{2 \cdot (-3)}}.
  4. Applying the Quadratic Formula: We simplify the square root of 2828 by factoring it into 4×74 \times 7 and taking the square root of 44 out of the square root sign: 28=4×7=2×7\sqrt{28} = \sqrt{4 \times 7} = 2 \times \sqrt{7}.
  5. Simplifying the Square Root: Now we substitute the simplified square root back into the quadratic formula:\newlinex=4±276x = \frac{{-4 \pm 2\sqrt{7}}}{{-6}}.
  6. Substituting the Simplified Square Root: We can simplify the fraction by dividing both the numerator and the denominator by 22:\newlinex=2±73x = \frac{{-2 \pm \sqrt{7}}}{{-3}}.
  7. Simplifying the Fraction: Finally, we can write the solutions as two separate numbers:\newlinex = 23+73\frac{-2}{3} + \frac{\sqrt{7}}{3} or x = 2373\frac{-2}{3} - \frac{\sqrt{7}}{3}.

More problems from Domain and range