Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the solutions of the quadratic equation 
2x^(2)+6x-2=0.
Choose 1 answer:
(A) 
-(3)/(4)+-(sqrt13)/(4)
(B) 
(3)/(2)+-(sqrt13)/(2)
(c) 
-(3)/(2)+-(sqrt13)/(2)
(D) 
-(3)/(2)+-(sqrt13)/(2)i

Find the solutions of the quadratic equation 2x2+6x2=0 2 x^{2}+6 x-2=0 .\newlineChoose 11 answer:\newline(A) 34±134 -\frac{3}{4} \pm \frac{\sqrt{13}}{4} \newline(B) 32±132 \frac{3}{2} \pm \frac{\sqrt{13}}{2} \newline(C) 32±132 -\frac{3}{2} \pm \frac{\sqrt{13}}{2} \newline(D) 32±132i -\frac{3}{2} \pm \frac{\sqrt{13}}{2} i

Full solution

Q. Find the solutions of the quadratic equation 2x2+6x2=0 2 x^{2}+6 x-2=0 .\newlineChoose 11 answer:\newline(A) 34±134 -\frac{3}{4} \pm \frac{\sqrt{13}}{4} \newline(B) 32±132 \frac{3}{2} \pm \frac{\sqrt{13}}{2} \newline(C) 32±132 -\frac{3}{2} \pm \frac{\sqrt{13}}{2} \newline(D) 32±132i -\frac{3}{2} \pm \frac{\sqrt{13}}{2} i
  1. Quadratic Formula: We will use the quadratic formula to solve the equation 2x2+6x2=02x^2 + 6x - 2 = 0. The quadratic formula is given by x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}, where aa, bb, and cc are the coefficients of the quadratic equation ax2+bx+c=0ax^2 + bx + c = 0.
  2. Identifying Coefficients: First, identify the coefficients aa, bb, and cc from the quadratic equation. In our equation, a=2a = 2, b=6b = 6, and c=2c = -2.
  3. Calculating the Discriminant: Next, calculate the discriminant, which is the part under the square root in the quadratic formula: b24acb^2 - 4ac. For our equation, the discriminant is 624(2)(2)=36+16=526^2 - 4(2)(-2) = 36 + 16 = 52.
  4. Plugging Values into the Formula: Now, plug the values of aa, bb, and the discriminant into the quadratic formula to find the solutions for xx. We have x=6±524x = \frac{{-6 \pm \sqrt{52}}}{{4}}. Simplify 52\sqrt{52} to 413=213\sqrt{4 \cdot 13} = 2\sqrt{13}.
  5. Simplifying the Formula: Substitute 52\sqrt{52} with 2132\sqrt{13} in the formula to get x=6±2134x = \frac{-6 \pm 2\sqrt{13}}{4}. Now, we can simplify this by dividing both terms in the numerator by 22.
  6. Final Solutions: After simplifying, we get x=3±132x = \frac{{-3 \pm \sqrt{13}}}{{2}}. These are the solutions to the quadratic equation.

More problems from Domain and range