Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Find the solutions of the quadratic equation 
11x^(2)-6x-2=0.
Choose 1 answer:
(A) 
-(3)/(11)+-(sqrt31)/(11)
(B) 
(3)/(11)+-(sqrt31)/(11)i
(C) 
(3)/(11)+-(sqrt31)/(11)
(D) 
(3)/(11)+-(sqrt52)/(11)i

Find the solutions of the quadratic equation 11x26x2=0 11 x^{2}-6 x-2=0 .\newlineChoose 11 answer:\newline(A) 311±3111 -\frac{3}{11} \pm \frac{\sqrt{31}}{11} \newline(B) 311±3111i \frac{3}{11} \pm \frac{\sqrt{31}}{11} i \newline(C) 311±3111 \frac{3}{11} \pm \frac{\sqrt{31}}{11} \newline(D) 311±5211i \frac{3}{11} \pm \frac{\sqrt{52}}{11} i

Full solution

Q. Find the solutions of the quadratic equation 11x26x2=0 11 x^{2}-6 x-2=0 .\newlineChoose 11 answer:\newline(A) 311±3111 -\frac{3}{11} \pm \frac{\sqrt{31}}{11} \newline(B) 311±3111i \frac{3}{11} \pm \frac{\sqrt{31}}{11} i \newline(C) 311±3111 \frac{3}{11} \pm \frac{\sqrt{31}}{11} \newline(D) 311±5211i \frac{3}{11} \pm \frac{\sqrt{52}}{11} i
  1. Identify coefficients: Identify the coefficients of the quadratic equation.\newlineThe quadratic equation is in the form ax2+bx+c=0ax^2 + bx + c = 0. For the equation 11x26x2=011x^2 - 6x - 2 = 0, the coefficients are:\newlinea=11a = 11, b=6b = -6, and c=2c = -2.
  2. Use quadratic formula: Use the quadratic formula to find the solutions.\newlineThe quadratic formula is x=b±b24ac2ax = \frac{{-b \pm \sqrt{{b^2 - 4ac}}}}{{2a}}. We will substitute the values of aa, bb, and cc into the formula.
  3. Calculate discriminant: Calculate the discriminant.\newlineThe discriminant is the part of the quadratic formula under the square root: b24acb^2 - 4ac. Let's calculate it:\newlineDiscriminant = (6)24(11)(2)=36+88=124(-6)^2 - 4(11)(-2) = 36 + 88 = 124.
  4. Check discriminant: Check if the discriminant is positive, negative, or zero.\newlineSince the discriminant is 124124, which is a positive number, we will have two real solutions.
  5. Calculate solutions: Calculate the solutions using the quadratic formula.\newlinex=(6)±124211x = \frac{-(-6) \pm \sqrt{124}}{2 \cdot 11}\newlinex=6±12422x = \frac{6 \pm \sqrt{124}}{22}\newlinex=6±23122x = \frac{6 \pm 2\sqrt{31}}{22}\newlinex=3±3111x = \frac{3 \pm \sqrt{31}}{11}
  6. Simplify solutions: Simplify the solutions.\newlineWe can simplify the solutions by dividing both the numerator and the denominator by the greatest common divisor, which is already done in the previous step. So, the solutions are:\newlinex = (3+31)/11(3 + \sqrt{31}) / 11 and x = (331)/11(3 - \sqrt{31}) / 11

More problems from Domain and range