Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[h(1)=14],[h(n)=(28)/(h(n-1))]:}],[h(2)=◻]:}

{h(1)=14h(n)=28h(n1)h(2)= \begin{array}{l}\left\{\begin{array}{l}h(1)=14 \\ h(n)=\frac{28}{h(n-1)}\end{array}\right. \\ h(2)=\square\end{array}

Full solution

Q. {h(1)=14h(n)=28h(n1)h(2)= \begin{array}{l}\left\{\begin{array}{l}h(1)=14 \\ h(n)=\frac{28}{h(n-1)}\end{array}\right. \\ h(2)=\square\end{array}
  1. Given recursive function: We are given the recursive function h(n)=28h(n1)h(n) = \frac{28}{h(n-1)} and the initial condition h(1)=14h(1) = 14. We need to find the value of h(2)h(2).\newlineTo find h(2)h(2), we use the recursive function with n=2n = 2.
  2. Substitute n=2n=2: We substitute n=2n = 2 into the recursive function to get h(2)=28h(1)h(2) = \frac{28}{h(1)}.\newlineSince we know h(1)=14h(1) = 14, we can substitute this value into the equation.
  3. Calculate h(2)h(2): Now we calculate h(2)=2814h(2) = \frac{28}{14}. This simplifies to h(2)=2h(2) = 2.
  4. Check calculation: We check our calculation to ensure there are no math errors. 2828 divided by 1414 indeed equals 22, so there is no math error.

More problems from Evaluate recursive formulas for sequences