Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[{[g(1)=10],[g(n)=g(n-1)-7.5]:}],[g(3)=◻]:}

{g(1)=10g(n)=g(n1)7.5g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=10 \\ g(n)=g(n-1)-7.5\end{array}\right. \\ g(3)=\square\end{array}

Full solution

Q. {g(1)=10g(n)=g(n1)7.5g(3)= \begin{array}{l}\left\{\begin{array}{l}g(1)=10 \\ g(n)=g(n-1)-7.5\end{array}\right. \\ g(3)=\square\end{array}
  1. Given initial condition and recursive formula: We are given the initial condition and the recursive formula for the sequence g(n)g(n):g(1)=10g(1) = 10g(n)=g(n1)7.5g(n) = g(n - 1) - 7.5To find g(3)g(3), we first need to find g(2)g(2) using the recursive formula.
  2. Calculating g(2)g(2) using recursive formula: Using the recursive formula, we calculate g(2)g(2):
    g(2)=g(1)7.5g(2) = g(1) - 7.5
    g(2)=107.5g(2) = 10 - 7.5
    g(2)=2.5g(2) = 2.5
    Now we have the value of g(2)g(2).
  3. Finding g(3)g(3) using g(2)g(2): With the value of g(2)g(2), we can now calculate g(3)g(3):
    g(3)=g(2)7.5g(3) = g(2) - 7.5
    g(3)=2.57.5g(3) = 2.5 - 7.5
    g(3)=5g(3) = -5
    We have found the value of g(3)g(3).

More problems from Evaluate recursive formulas for sequences