Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{[f(1)=4],[f(2)=25],[f(n)=f(n-2)*f(n-1)]:}

f(3)=

{f(1)=4f(2)=25f(n)=f(n2)f(n1)f(3)= \begin{array}{l}\left\{\begin{array}{l}f(1)=4 \\ f(2)=25 \\ f(n)=f(n-2) \cdot f(n-1)\end{array}\right. \\ f(3)=\end{array}

Full solution

Q. {f(1)=4f(2)=25f(n)=f(n2)f(n1)f(3)= \begin{array}{l}\left\{\begin{array}{l}f(1)=4 \\ f(2)=25 \\ f(n)=f(n-2) \cdot f(n-1)\end{array}\right. \\ f(3)=\end{array}
  1. Define Recursive Function: The problem provides a recursive function where each term f(n)f(n) is the product of the two preceding terms, f(n2)f(n-2) and f(n1)f(n-1). We are given f(1)=4f(1) = 4 and f(2)=25f(2) = 25. To find f(3)f(3), we need to multiply f(1)f(1) and f(2)f(2).\newlineCalculation: f(3)=f(1)×f(2)=4×25f(3) = f(1) \times f(2) = 4 \times 25
  2. Calculate f(3)f(3): After performing the multiplication, we get the value of f(3)f(3).\newlineCalculation: f(3)=4×25=100f(3) = 4 \times 25 = 100

More problems from Evaluate recursive formulas for sequences