Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the total number of different 11-letter arrangements that can be formed using the letters in the word RESPIRATION?
Answer:

What is the total number of different 1111-letter arrangements that can be formed using the letters in the word RESPIRATION?\newlineAnswer:

Full solution

Q. What is the total number of different 1111-letter arrangements that can be formed using the letters in the word RESPIRATION?\newlineAnswer:
  1. Count Letters Frequency: Determine the total number of letters and the frequency of each letter in the word RESPIRATION.\newlineThe word RESPIRATION has 1111 letters in total. The frequency of each letter is as follows:\newlineR - 22 times\newlineE - 11 time\newlineS - 11 time\newlineP - 11 time\newlineI - 22 times\newlineA - 11 time\newlineT - 11 time\newlineO - 11 time\newlineN - 11 time
  2. Permutations Formula: Use the formula for permutations of a multiset to calculate the number of different arrangements.\newlineThe formula is:\newlineNumber of arrangements = n!n1!×n2!××nk!\frac{n!}{n_1! \times n_2! \times \ldots \times n_k!}\newlinewhere nn is the total number of letters, and n1n_1, n2n_2, \ldots, nkn_k are the frequencies of each distinct letter.\newlineFor RESPIRATION, this becomes:\newlineNumber of arrangements = 11!2!×1!×1!×1!×2!×1!×1!×1!×1!\frac{11!}{2! \times 1! \times 1! \times 1! \times 2! \times 1! \times 1! \times 1! \times 1!}
  3. Calculate Total Factorial: Calculate the factorial of the total number of letters, which is 11!11!.\newline11!=11×10×9×8×7×6×5×4×3×2×111! = 11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1
  4. Calculate Letter Factorials: Calculate the factorial of the frequency of each letter.\newline2!=2×12! = 2 \times 1\newline1!=11! = 1 (for all the letters that appear only once)
  5. Substitute and Calculate: Substitute the factorial values into the formula and calculate the number of arrangements.\newlineNumber of arrangements = 11!/(2!1!1!1!2!1!1!1!1!)11! / (2! * 1! * 1! * 1! * 2! * 1! * 1! * 1! * 1!)\newline= (1110987654321)/((21)111(21)1111)(11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / ((2 * 1) * 1 * 1 * 1 * (2 * 1) * 1 * 1 * 1 * 1)\newline= (1110987654321)/(22)(11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / (2 * 2)\newline= (1110987654321)/4(11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / 4\newline= 11109876543/411 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 / 4\newline= 111098765311 * 10 * 9 * 8 * 7 * 6 * 5 * 3\newline= 111098761511 * 10 * 9 * 8 * 7 * 6 * 15\newline= 11109879011 * 10 * 9 * 8 * 7 * 90\newline= 11109863011 * 10 * 9 * 8 * 630\newline= 11109504011 * 10 * 9 * 5040\newline= (1110987654321)/((21)111(21)1111)(11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / ((2 * 1) * 1 * 1 * 1 * (2 * 1) * 1 * 1 * 1 * 1)00\newline= (1110987654321)/((21)111(21)1111)(11 * 10 * 9 * 8 * 7 * 6 * 5 * 4 * 3 * 2 * 1) / ((2 * 1) * 1 * 1 * 1 * (2 * 1) * 1 * 1 * 1 * 1)11\newline= $\(4989600\)

More problems from Partial sums of geometric series