Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The radius of the base of a cylinder is decreasing at a rate of 12 kilometers per second.
The height of the cylinder is fixed at 2.5 kilometers.
At a certain instant, the radius is 40 kilometers.
What is the rate of change of the volume of the cylinder at that instant (in cubic kilometers per second)?
Choose 1 answer:
(A) 
-2400 pi
(B) 
-4000 pi
(C) 
-1600 pi
(D) 
-360 pi
The volume of a cylinder with radius 
r and height 
h is 
pir^(2)h.

The radius of the base of a cylinder is decreasing at a rate of 1212 kilometers per second.\newlineThe height of the cylinder is fixed at 22.55 kilometers.\newlineAt a certain instant, the radius is 4040 kilometers.\newlineWhat is the rate of change of the volume of the cylinder at that instant (in cubic kilometers per second)?\newlineChoose 11 answer:\newline(A) 2400π -2400 \pi \newline(B) 4000π -4000 \pi \newline(C) 1600π -1600 \pi \newline(D) 360π -360 \pi \newlineThe volume of a cylinder with radius r r and height h h is πr2h \pi r^{2} h .

Full solution

Q. The radius of the base of a cylinder is decreasing at a rate of 1212 kilometers per second.\newlineThe height of the cylinder is fixed at 22.55 kilometers.\newlineAt a certain instant, the radius is 4040 kilometers.\newlineWhat is the rate of change of the volume of the cylinder at that instant (in cubic kilometers per second)?\newlineChoose 11 answer:\newline(A) 2400π -2400 \pi \newline(B) 4000π -4000 \pi \newline(C) 1600π -1600 \pi \newline(D) 360π -360 \pi \newlineThe volume of a cylinder with radius r r and height h h is πr2h \pi r^{2} h .
  1. Differentiate Volume Formula: First, let's differentiate the volume formula with respect to time tt to find dVdt\frac{dV}{dt}.\newlinedVdt=d(πr2h)dt\frac{dV}{dt} = \frac{d(\pi r^2 h)}{dt}\newlineSince hh is constant, we can take it outside the differentiation.\newlinedVdt=πhd(r2)dt\frac{dV}{dt} = \pi h \cdot \frac{d(r^2)}{dt}
  2. Differentiate r2r^2: Now, we differentiate r2r^2 with respect to time tt.\newlined(r2)dt=2rdrdt\frac{d(r^2)}{dt} = 2r \cdot \frac{dr}{dt}
  3. Calculate dVdt\frac{dV}{dt}: We plug in the values for drdt\frac{dr}{dt}, rr, and hh into the differentiated volume formula.\newlinedVdt=πh(2rdrdt)\frac{dV}{dt} = \pi h \cdot (2r \cdot \frac{dr}{dt})\newlinedVdt=π2.5(24012)\frac{dV}{dt} = \pi \cdot 2.5 \cdot (2 \cdot 40 \cdot -12)
  4. Calculate final value: Now, we calculate the value.\newlinedVdt=π×2.5×(2×40×12)\frac{dV}{dt} = \pi \times 2.5 \times (2 \times 40 \times -12)\newlinedVdt=π×2.5×(960)\frac{dV}{dt} = \pi \times 2.5 \times (-960)\newlinedVdt=2400πkm3/s\frac{dV}{dt} = -2400\pi \, \text{km}^3/s

More problems from Solve quadratic equations: word problems