Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The derivative of the function 
f is defined by 
f^(')(x)=x^(2)-4x+2cos(2x-4). If 
f(0)=1, then use a calculator to find the value of 
f(6) to the nearest thousandth.
Answer:

The derivative of the function f f is defined by f(x)=x24x+2cos(2x4) f^{\prime}(x)=x^{2}-4 x+2 \cos (2 x-4) . If f(0)=1 f(0)=1 , then use a calculator to find the value of f(6) f(6) to the nearest thousandth.\newlineAnswer:

Full solution

Q. The derivative of the function f f is defined by f(x)=x24x+2cos(2x4) f^{\prime}(x)=x^{2}-4 x+2 \cos (2 x-4) . If f(0)=1 f(0)=1 , then use a calculator to find the value of f(6) f(6) to the nearest thousandth.\newlineAnswer:
  1. Set up integral: To find the value of f(6)f(6), we need to integrate the derivative f(x)f'(x) from 00 to 66 and then add the initial value f(0)f(0) to the result of the integration.
  2. Integrate each term: First, we set up the integral of f(x)f'(x) from 00 to 66:06(x24x+2cos(2x4))dx\int_{0}^{6} (x^2 - 4x + 2\cos(2x-4)) \, dx
  3. Evaluate integrals: We integrate each term separately:\newline06x2dx=[x33]06\int_{0}^{6} x^2 \, dx = \left[\frac{x^3}{3}\right]_{0}^{6}\newline064xdx=[2x2]06\int_{0}^{6} -4x \, dx = \left[-2x^2\right]_{0}^{6}\newline062cos(2x4)dx=[sin(2x4)]06\int_{0}^{6} 2\cos(2x-4) \, dx = \left[\sin(2x-4)\right]_{0}^{6} (Note: We need to use substitution for this integral)
  4. Substitute and integrate: We evaluate each integral at the bounds 00 and 66:
    [x33]\left[\frac{x^3}{3}\right] (from 00 to 66) = (633)(033)\left(\frac{6^3}{3}\right) - \left(\frac{0^3}{3}\right) = 7272
    [2x2]\left[-2x^2\right] (from 00 to 66) = 6600 = 6611
    For the cosine integral, we use substitution: let 6622, then 6633, so 6644.
  5. Evaluate cosine integral: Now we integrate 2cos(u)2\cos(u) with respect to uu: 2cos(u)du=2sin(u)\int 2\cos(u) \, du = 2\sin(u) We need to change the limits of integration according to the substitution: When x=0x = 0, u=204=4u = 2\cdot 0 - 4 = -4 When x=6x = 6, u=264=8u = 2\cdot 6 - 4 = 8 So we evaluate 2sin(u)2\sin(u) from u=4u = -4 to u=8u = 8.
  6. Add integrals: We find the value of the integral of the cosine term:\newline2sin(u)2\sin(u) (from u=4u = -4 to u=8u = 8) = 2sin(8)2sin(4)2\sin(8) - 2\sin(-4)\newlineUsing a calculator, we find:\newline2sin(8)2×0.989=1.9782\sin(8) \approx 2\times0.989 = 1.978\newline2sin(4)2×(0.756)=1.5122\sin(-4) \approx 2\times(-0.756) = -1.512\newlineSo the integral from 4-4 to 88 is approximately 1.978(1.512)=3.4901.978 - (-1.512) = 3.490
  7. Add initial value: We add the results of the integrals: 7272+3.490=3.49072 - 72 + 3.490 = 3.490
  8. Add initial value: We add the results of the integrals: 7272+3.490=3.49072 - 72 + 3.490 = 3.490 Finally, we add the initial value f(0)=1f(0) = 1 to the result of the integration to find f(6)f(6): f(6)=1+3.490=4.490f(6) = 1 + 3.490 = 4.490

More problems from Evaluate variable expressions for sequences