Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Note: Attempt all questions.
Question I
Usepatital differentiation to evaluate 
f_(x) and 
f_(y) of the following functions:
i. 
f(x,y,z)=x^(2)sin xyz
ii 
f(x,y)=3ln(x^(3)+y^(3))
Question 2
Wiserimplicit differentiation to find 
(del z)/(del x) and 
(del z)/(del v),

3x^(2)yz^(2)-x sin y+5xy=3
Question 3
Apply double integral to evaluate the function 
f(x,y)=x^(2)y^(2)+x over the region in the first quadrant bounded by the lines 
y=x,y=2x,x=1,x=2.
Question 4
Apply line integral to evaluate 
int(2y+x^(2)-z^(2))d s over the line segment 
x=t,y=t^(2),z=1,quad0 <= t <= 1. from 
(0,0,1) to 
(1,1,1).
Question 5

gamma=(t,t^(2),1)
Solve the homogeneous differential equation

x^(2)dy-y(x+y)dx=0quad,quad y(0)=1

Note: Attempt all questions.\newlineQuestion I\newlineUsepatital differentiation to evaluate fx f_{x} and fy f_{y} of the following functions:\newlinei. f(x,y,z)=x2sinxyz f(x, y, z)=x^{2} \sin x y z \newlineii f(x,y)=3ln(x3+y3) f(x, y)=3 \ln \left(x^{3}+y^{3}\right) \newlineQuestion 22\newlineWiserimplicit differentiation to find zx \frac{\partial z}{\partial x} and zv \frac{\partial z}{\partial v} ,\newline3x2yz2xsiny+5xy=3 3 x^{2} y z^{2}-x \sin y+5 x y=3 \newlineQuestion 33\newlineApply double integral to evaluate the function f(x,y)=x2y2+x f(x, y)=x^{2} y^{2}+x over the region in the first quadrant bounded by the lines y=x,y=2x,x=1,x=2 y=x, y=2 x, x=1, x=2 .\newlineQuestion 44\newlineApply line integral to evaluate (2y+x2z2)d \int\left(2 y+x^{2}-z^{2}\right) d s over the line segment x=t,y=t2,z=1,0t1 x=t, y=t^{2}, z=1, \quad 0 \leq t \leq 1 . from fy f_{y} 00 to fy f_{y} 11.\newlineQuestion 55\newlineγ=(t,t2,1) \gamma=\left(t, t^{2}, 1\right) \newlineSolve the homogeneous differential equation\newlinex2dyy(x+y)dx=0,y(0)=1 x^{2} d y-y(x+y) d x=0 \quad, \quad y(0)=1

Full solution

Q. Note: Attempt all questions.\newlineQuestion I\newlineUsepatital differentiation to evaluate fx f_{x} and fy f_{y} of the following functions:\newlinei. f(x,y,z)=x2sinxyz f(x, y, z)=x^{2} \sin x y z \newlineii f(x,y)=3ln(x3+y3) f(x, y)=3 \ln \left(x^{3}+y^{3}\right) \newlineQuestion 22\newlineWiserimplicit differentiation to find zx \frac{\partial z}{\partial x} and zv \frac{\partial z}{\partial v} ,\newline3x2yz2xsiny+5xy=3 3 x^{2} y z^{2}-x \sin y+5 x y=3 \newlineQuestion 33\newlineApply double integral to evaluate the function f(x,y)=x2y2+x f(x, y)=x^{2} y^{2}+x over the region in the first quadrant bounded by the lines y=x,y=2x,x=1,x=2 y=x, y=2 x, x=1, x=2 .\newlineQuestion 44\newlineApply line integral to evaluate (2y+x2z2)d \int\left(2 y+x^{2}-z^{2}\right) d s over the line segment x=t,y=t2,z=1,0t1 x=t, y=t^{2}, z=1, \quad 0 \leq t \leq 1 . from fy f_{y} 00 to fy f_{y} 11.\newlineQuestion 55\newlineγ=(t,t2,1) \gamma=\left(t, t^{2}, 1\right) \newlineSolve the homogeneous differential equation\newlinex2dyy(x+y)dx=0,y(0)=1 x^{2} d y-y(x+y) d x=0 \quad, \quad y(0)=1
  1. Partial Derivatives of f(x,y,z)f(x,y,z): For Question I part i, we need to find the partial derivatives fxf_x and fyf_y of f(x,y,z)=x2sin(xyz)f(x,y,z) = x^2 \sin(xyz). To find fxf_x, differentiate with respect to xx while treating yy and zz as constants. fx=ddx[x2sin(xyz)]=2xsin(xyz)+x2cos(xyz)yzf_x = \frac{d}{dx} [x^2 \sin(xyz)] = 2x \sin(xyz) + x^2 \cos(xyz) \cdot yz
  2. Implicit Differentiation: Now, to find fyf_y, differentiate with respect to yy while treating xx and zz as constants.\newlinefy=ddy[x2sin(xyz)]=x2cos(xyz)xzf_y = \frac{d}{dy} [x^2 \sin(xyz)] = x^2 \cos(xyz) \cdot xz
  3. Double Integral Evaluation: For Question I part ii, we need to find the partial derivatives fxf_x and fyf_y of f(x,y)=3ln(x3+y3)f(x,y) = 3\ln(x^3 + y^3). To find fxf_x, differentiate with respect to xx while treating yy as a constant. fx=ddx[3ln(x3+y3)]=3(3x2)(x3+y3)f_x = \frac{d}{dx} [3\ln(x^3 + y^3)] = 3 \cdot \frac{(3x^2)}{(x^3 + y^3)}
  4. Line Integral Evaluation: To find fyf_y, differentiate with respect to yy while treating xx as a constant.\newlinefy=ddy[3ln(x3+y3)]=3(3y2)(x3+y3)f_y = \frac{d}{dy} [3\ln(x^3 + y^3)] = 3 \cdot \frac{(3y^2)}{(x^3 + y^3)}
  5. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to x, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz}
  6. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2zdzdyzxcosy+5x=03x^2z^2 + 3x^2z\frac{dz}{dy}z - x \cos y + 5x = 0 Now, solve for dzdy\frac{dz}{dy}. zy\frac{\partial z}{\partial y}00
  7. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to x, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to y, we get: 3x2z2+3x2zdzdyzxcosy+5x=03x^2z^2 + 3x^2z\frac{dz}{dy}z - x \cos y + 5x = 0 Now, solve for dzdy\frac{dz}{dy}. dzdy=xcosy5x3x2z23x2z2\frac{dz}{dy} = \frac{x \cos y - 5x - 3x^2z^2}{3x^2z^2} For Question 33, we need to apply a double integral to evaluate the function f(x,y)=x2y2+xf(x,y) = x^2y^2 + x over the region bounded by zy\frac{\partial z}{\partial y}00, zy\frac{\partial z}{\partial y}11, zy\frac{\partial z}{\partial y}22, and zy\frac{\partial z}{\partial y}33. Set up the double integral as: zy\frac{\partial z}{\partial y}44 First, integrate with respect to y: zy\frac{\partial z}{\partial y}55
  8. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2zdzdyzxcosy+5x=03x^2z^2 + 3x^2z\frac{dz}{dy}z - x \cos y + 5x = 0 Now, solve for dzdy\frac{dz}{dy}. zy\frac{\partial z}{\partial y}00 For Question 33, we need to apply a double integral to evaluate the function zy\frac{\partial z}{\partial y}11 over the region bounded by zy\frac{\partial z}{\partial y}22, zy\frac{\partial z}{\partial y}33, zy\frac{\partial z}{\partial y}44, and zy\frac{\partial z}{\partial y}55. Set up the double integral as: zy\frac{\partial z}{\partial y}66 First, integrate with respect to yy: zy\frac{\partial z}{\partial y}88 Now, evaluate the inner integral: zy\frac{\partial z}{\partial y}99 Simplify the expression: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 300
  9. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find (zx)(\frac{\partial z}{\partial x}) and (zy)(\frac{\partial z}{\partial y}) from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2y(dzdx)zsiny+5y=06xyz^2 + 3x^2y(\frac{dz}{dx})z - \sin y + 5y = 0 Now, solve for (dzdx)(\frac{dz}{dx}). (dzdx)=siny5y6xyz23x2yz(\frac{dz}{dx}) = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2z(dzdy)zxcosy+5x=03x^2z^2 + 3x^2z(\frac{dz}{dy})z - x \cos y + 5x = 0 Now, solve for (dzdy)(\frac{dz}{dy}). (zy)(\frac{\partial z}{\partial y})00 For Question 33, we need to apply a double integral to evaluate the function (zy)(\frac{\partial z}{\partial y})11 over the region bounded by (zy)(\frac{\partial z}{\partial y})22, (zy)(\frac{\partial z}{\partial y})33, (zy)(\frac{\partial z}{\partial y})44, and (zy)(\frac{\partial z}{\partial y})55. Set up the double integral as: (zy)(\frac{\partial z}{\partial y})66 First, integrate with respect to yy: (zy)(\frac{\partial z}{\partial y})88 Now, evaluate the inner integral: (zy)(\frac{\partial z}{\partial y})99 Simplify the expression: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 300 Finally, integrate with respect to xx: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 322 Evaluate the definite integral: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 333
  10. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2zdzdyzxcosy+5x=03x^2z^2 + 3x^2z\frac{dz}{dy}z - x \cos y + 5x = 0 Now, solve for dzdy\frac{dz}{dy}. zy\frac{\partial z}{\partial y}00 For Question 33, we need to apply a double integral to evaluate the function zy\frac{\partial z}{\partial y}11 over the region bounded by zy\frac{\partial z}{\partial y}22, zy\frac{\partial z}{\partial y}33, zy\frac{\partial z}{\partial y}44, and zy\frac{\partial z}{\partial y}55. Set up the double integral as: zy\frac{\partial z}{\partial y}66 First, integrate with respect to yy: zy\frac{\partial z}{\partial y}88 Now, evaluate the inner integral: zy\frac{\partial z}{\partial y}99 Simplify the expression: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 300 Finally, integrate with respect to xx: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 322 Evaluate the definite integral: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 333 For Question 44, we need to apply a line integral to evaluate 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 344 over the line segment 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 355, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 366, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 377, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 388. First, find 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 399, which is the differential arc length: xx00 xx11 xx22
  11. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2zdzdyzxcosy+5x=03x^2z^2 + 3x^2z\frac{dz}{dy}z - x \cos y + 5x = 0 Now, solve for dzdy\frac{dz}{dy}. zy\frac{\partial z}{\partial y}00 For Question 33, we need to apply a double integral to evaluate the function zy\frac{\partial z}{\partial y}11 over the region bounded by zy\frac{\partial z}{\partial y}22, zy\frac{\partial z}{\partial y}33, zy\frac{\partial z}{\partial y}44, and zy\frac{\partial z}{\partial y}55. Set up the double integral as: zy\frac{\partial z}{\partial y}66 First, integrate with respect to yy: zy\frac{\partial z}{\partial y}88 Now, evaluate the inner integral: zy\frac{\partial z}{\partial y}99 Simplify the expression: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 300 Finally, integrate with respect to xx: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 322 Evaluate the definite integral: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 333 For Question 44, we need to apply a line integral to evaluate 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 344 over the line segment 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 355, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 366, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 377, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 388. First, find 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 399, which is the differential arc length: xx00 xx11 xx22 Now, set up the line integral: xx33 Simplify the integrand: xx44
  12. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find (zx)(\frac{\partial z}{\partial x}) and (zy)(\frac{\partial z}{\partial y}) from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2y(dzdx)zsiny+5y=06xyz^2 + 3x^2y(\frac{dz}{dx})z - \sin y + 5y = 0 Now, solve for (dzdx)(\frac{dz}{dx}). (dzdx)=siny5y6xyz23x2yz(\frac{dz}{dx}) = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2z(dzdy)zxcosy+5x=03x^2z^2 + 3x^2z(\frac{dz}{dy})z - x \cos y + 5x = 0 Now, solve for (dzdy)(\frac{dz}{dy}). (zy)(\frac{\partial z}{\partial y})00 For Question 33, we need to apply a double integral to evaluate the function (zy)(\frac{\partial z}{\partial y})11 over the region bounded by (zy)(\frac{\partial z}{\partial y})22, (zy)(\frac{\partial z}{\partial y})33, (zy)(\frac{\partial z}{\partial y})44, and (zy)(\frac{\partial z}{\partial y})55. Set up the double integral as: (zy)(\frac{\partial z}{\partial y})66 First, integrate with respect to yy: (zy)(\frac{\partial z}{\partial y})88 Now, evaluate the inner integral: (zy)(\frac{\partial z}{\partial y})99 Simplify the expression: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 300 Finally, integrate with respect to xx: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 322 Evaluate the definite integral: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 333 For Question 44, we need to apply a line integral to evaluate 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 344 over the line segment 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 355, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 366, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 377, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 388. First, find 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 399, which is the differential arc length: xx00 xx11 xx22 Now, set up the line integral: xx33 Simplify the integrand: xx44 For Question 55, we need to solve the homogeneous differential equation xx55, with the initial condition xx66. Separate variables and integrate: xx77 xx88
  13. Homogeneous Differential Equation Solution: For Question 22, we need to use implicit differentiation to find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} from the equation 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 3. Differentiating with respect to xx, we get: 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 0 Now, solve for dzdx\frac{dz}{dx}. dzdx=siny5y6xyz23x2yz\frac{dz}{dx} = \frac{\sin y - 5y - 6xyz^2}{3x^2yz} Differentiating with respect to yy, we get: 3x2z2+3x2zdzdyzxcosy+5x=03x^2z^2 + 3x^2z\frac{dz}{dy}z - x \cos y + 5x = 0 Now, solve for dzdy\frac{dz}{dy}. zy\frac{\partial z}{\partial y}00 For Question 33, we need to apply a double integral to evaluate the function zy\frac{\partial z}{\partial y}11 over the region bounded by zy\frac{\partial z}{\partial y}22, zy\frac{\partial z}{\partial y}33, zy\frac{\partial z}{\partial y}44, and zy\frac{\partial z}{\partial y}55. Set up the double integral as: zy\frac{\partial z}{\partial y}66 First, integrate with respect to yy: zy\frac{\partial z}{\partial y}88 Now, evaluate the inner integral: zy\frac{\partial z}{\partial y}99 Simplify the expression: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 300 Finally, integrate with respect to xx: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 322 Evaluate the definite integral: 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 333 For Question 44, we need to apply a line integral to evaluate 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 344 over the line segment 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 355, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 366, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 377, 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 388. First, find 3x2yz2xsiny+5xy=33x^2yz^2 - x \sin y + 5xy = 399, which is the differential arc length: xx00 xx11 xx22 Now, set up the line integral: xx33 Simplify the integrand: xx44 For Question 55, we need to solve the homogeneous differential equation xx55, with the initial condition xx66. Separate variables and integrate: xx77 xx88 Apply the initial condition xx66 to find 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 000. This is not possible because 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 011 is undefined at 6xyz2+3x2ydzdxzsiny+5y=06xyz^2 + 3x^2y\frac{dz}{dx}z - \sin y + 5y = 022.

More problems from Transformations of absolute value functions