Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

No,
Tugas
Date
Tentukan determinan dari matriks berileut ini menggunakan cara ckspansi

A=[[2,0,-3,6],[0,5,2,3],[-2,3,-1,4],[3,6,0,5]]

No,\newlineTugas\newlineDate\newlineTentukan determinan dari matriks berileut ini menggunakan cara ckspansi\newlineA=[2036052323143605] A=\left[\begin{array}{cccc} 2 & 0 & -3 & 6 \\ 0 & 5 & 2 & 3 \\ -2 & 3 & -1 & 4 \\ 3 & 6 & 0 & 5 \end{array}\right]

Full solution

Q. No,\newlineTugas\newlineDate\newlineTentukan determinan dari matriks berileut ini menggunakan cara ckspansi\newlineA=[2036052323143605] A=\left[\begin{array}{cccc} 2 & 0 & -3 & 6 \\ 0 & 5 & 2 & 3 \\ -2 & 3 & -1 & 4 \\ 3 & 6 & 0 & 5 \end{array}\right]
  1. Write Matrix A: First, let's write down the matrix AA for clarity:\newlineA=[2036 0523 2314 3605]A = \begin{bmatrix} 2 & 0 & -3 & 6 \ 0 & 5 & 2 & 3 \ -2 & 3 & -1 & 4 \ 3 & 6 & 0 & 5 \end{bmatrix}\newlineTo find the determinant of a 4×44 \times 4 matrix, we can use the expansion method by expanding along the first row (or any row/column that we find convenient). In this case, the first row has a zero which will make calculations a bit easier.
  2. Expand Along First Row: We will expand along the first row. The determinant of AA, denoted as det(A)\text{det}(A), is given by:\newlinedet(A)=a11×C11a12×C12+a13×C13a14×C14\text{det}(A) = a_{11} \times C_{11} - a_{12} \times C_{12} + a_{13} \times C_{13} - a_{14} \times C_{14}\newlinewhere aija_{ij} is the element in the iith row and jjth column, and CijC_{ij} is the cofactor of aija_{ij}.
  3. Calculate Cofactors: Calculating the cofactors for the first row:\newlineC11C_{11} is the determinant of the 3×33 \times 3 matrix obtained by removing the first row and first column from AA:\newlineC11=523 314 605C_{11} = \begin{vmatrix} 5 & 2 & 3 \ 3 & -1 & 4 \ 6 & 0 & 5 \end{vmatrix}\newlineC12C_{12} is zero since a12a_{12} is zero, so we don't need to calculate it.\newlineC13C_{13} is the determinant of the 3×33 \times 3 matrix obtained by removing the first row and third column from AA:\newlineC13=053 234 365C_{13} = \begin{vmatrix} 0 & 5 & 3 \ -2 & 3 & 4 \ 3 & 6 & 5 \end{vmatrix}\newlineC14C_{14} is the determinant of the 3×33 \times 3 matrix obtained by removing the first row and fourth column from AA:\newlineC14=052 231 360C_{14} = \begin{vmatrix} 0 & 5 & 2 \ -2 & 3 & -1 \ 3 & 6 & 0 \end{vmatrix}
  4. Calculate Determinants: Now we calculate the determinant of each 33x33 matrix:\newlineFor C11C_{11}:\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)\newlinedet(C11)=5×(5)2×15+3×6\text{det}(C_{11}) = 5 \times (-5) - 2 \times 15 + 3 \times 6\newlinedet(C11)=2530+18\text{det}(C_{11}) = -25 - 30 + 18\newlinedet(C11)=37\text{det}(C_{11}) = -37\newlineFor C13C_{13} (we only need to calculate this if necessary, depending on the value of a13a_{13}):\newlinedet(C13)=0×((3)×5(6)×4)5×((2)×5(3)×4)+3×((2)×6(3)×3)\text{det}(C_{13}) = 0 \times ((3)\times5 - (6)\times4) - 5 \times ((-2)\times5 - (3)\times4) + 3 \times ((-2)\times6 - (3)\times3)\newlinedet(C13)=05×(1012)+3×(129)\text{det}(C_{13}) = 0 - 5 \times (-10 - 12) + 3 \times (-12 - 9)\newlinedet(C13)=0+5×(22)3×21\text{det}(C_{13}) = 0 + 5 \times (-22) - 3 \times 21\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)00\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)11\newlineFor det(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)22 (we only need to calculate this if necessary, depending on the value of det(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)33):\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)44\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)55\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)66\newlinedet(C11)=5×((1)×50×4)2×(3×50×4)+3×(3×0(1)×6)\text{det}(C_{11}) = 5 \times ((-1)\times5 - 0\times4) - 2 \times (3\times5 - 0\times4) + 3 \times (3\times0 - (-1)\times6)77\newline$\text{det}(C_{\(14\)}) = \(-87\)
  5. Combine Results: Now we can combine these results to find the determinant of A:\(\newline\)det(A) = \(2 \times (-37) - 0 \times (C_{12}\), which we don't need to calculate) \(- 3 \times (-173) + 6 \times (-87)\)\(\newline\)det(A) = \(-74 + 0 + 519 - 522\)\(\newline\)det(A) = \(-74 + 519 - 522\)\(\newline\)det(A) = \(445 - 522\)\(\newline\)det(A) = \(-77\)

More problems from Mean, median, mode, and range: find the missing number