Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Latihan Soal
1 Misalkan 
f[0,3]rarrR didefinisikan dengan 
f(x)=1 untuk 
0 <= x < 1,f(x)=x untuk 
1 <= x < 2 dan 
f(x)=x^(2) untuk 
2 <= x <= 3. Tentukan ekspresi eksplisit dan 
F(x)=int_(0)^(x)f sebagai fungsi dari 
x dan tentukan dimana F diferensiabel. Kemudian buat sketsa grafik fungsi 
f dan fungsi 
F !

Latihan Soal\newline11 Misalkan f[0,3]R \mathrm{f}[0,3] \rightarrow \mathrm{R} didefinisikan dengan f(x)=1 \mathrm{f}(\mathrm{x})=1 untuk 0x<1,f(x)=x 0 \leq \mathrm{x}<1, \mathrm{f}(\mathrm{x})=\mathrm{x} untuk 1x<2 1 \leq \mathrm{x}<2 dan f(x)=x2 \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} untuk 2x3 2 \leq \mathrm{x} \leq 3 . Tentukan ekspresi eksplisit dan F(x)=0xf \mathrm{F}(\mathrm{x})=\int_{0}^{x} f sebagai fungsi dari x x dan tentukan dimana F diferensiabel. Kemudian buat sketsa grafik fungsi f f dan fungsi F \mathrm{F} !

Full solution

Q. Latihan Soal\newline11 Misalkan f[0,3]R \mathrm{f}[0,3] \rightarrow \mathrm{R} didefinisikan dengan f(x)=1 \mathrm{f}(\mathrm{x})=1 untuk 0x<1,f(x)=x 0 \leq \mathrm{x}<1, \mathrm{f}(\mathrm{x})=\mathrm{x} untuk 1x<2 1 \leq \mathrm{x}<2 dan f(x)=x2 \mathrm{f}(\mathrm{x})=\mathrm{x}^{2} untuk 2x3 2 \leq \mathrm{x} \leq 3 . Tentukan ekspresi eksplisit dan F(x)=0xf \mathrm{F}(\mathrm{x})=\int_{0}^{x} f sebagai fungsi dari x x dan tentukan dimana F diferensiabel. Kemudian buat sketsa grafik fungsi f f dan fungsi F \mathrm{F} !
  1. Define f(x)f(x): For 0x<10 \leq x < 1, f(x)=1f(x) = 1. Integrate f(x)f(x) from 00 to xx to get F(x)F(x) for this interval.\newlineF(x)=0x1dx=x0xF(x) = \int_{0}^{x} 1 \, dx = x |_{0}^{x}\newlineF(x)=x0F(x) = x - 0\newlineF(x)=xF(x) = x for 0x<10 \leq x < 1
  2. Integrate f(x)f(x): For 1x<21 \leq x < 2, f(x)=xf(x) = x. Integrate f(x)f(x) from 00 to xx to get F(x)F(x) for this interval.\newlineFirst, add the area from the previous interval: F(1)=1F(1) = 1.\newlineF(x)=1+1xxdx=1+[x22]1xF(x) = 1 + \int_{1}^{x} x \, dx = 1 + \left[\frac{x^2}{2}\right] \bigg|_{1}^{x}\newlineF(x)=1+(x2212)F(x) = 1 + \left(\frac{x^2}{2} - \frac{1}{2}\right)\newline1x<21 \leq x < 200 for 1x<21 \leq x < 2
  3. Check differentiability: For 2x32 \leq x \leq 3, f(x)=x2f(x) = x^2. Integrate f(x)f(x) from 00 to xx to get F(x)F(x) for this interval.\newlineFirst, add the area from the previous intervals: F(2)=12+222=52F(2) = \frac{1}{2} + \frac{2^2}{2} = \frac{5}{2}.\newlineF(x)=52+2xx2dx=52+[x33]2xF(x) = \frac{5}{2} + \int_{2}^{x} x^2 \,dx = \frac{5}{2} + \left[\frac{x^3}{3}\right] \bigg|_{2}^{x}\newlineF(x)=52+(x3383)F(x) = \frac{5}{2} + \left(\frac{x^3}{3} - \frac{8}{3}\right)\newlineF(x)=5283+x33F(x) = \frac{5}{2} - \frac{8}{3} + \frac{x^3}{3} for 2x32 \leq x \leq 3
  4. Sketch f(x)f(x): Check the differentiability of F(x)F(x) at the transition points x=1x = 1 and x=2x = 2. At x=1x = 1, the left-hand limit of F(x)F'(x) is 11, and the right-hand limit is also 11 (since the derivative of x22\frac{x^2}{2} is xx). At x=2x = 2, the left-hand limit of F(x)F'(x) is F(x)F(x)22, and the right-hand limit is F(x)F(x)33. F(x)F(x) is not differentiable at x=2x = 2 because the left and right-hand limits of F(x)F'(x) do not match.
  5. Sketch F(x)F(x): Sketch the graph of f(x)f(x) by plotting the piecewise function:\newlineFor 0x<10 \leq x < 1, f(x)=1f(x) = 1 (a horizontal line).\newlineFor 1x<21 \leq x < 2, f(x)=xf(x) = x (a line with a slope of 11 passing through (1,1)(1,1)).\newlineFor 2x32 \leq x \leq 3, f(x)=x2f(x) = x^2 (a parabola starting at f(x)f(x)00).
  6. Sketch F(x): Sketch the graph of f(x) by plotting the piecewise function:\newlineFor 0x<10 \leq x < 1, f(x)=1f(x) = 1 (a horizontal line).\newlineFor 1x<21 \leq x < 2, f(x)=xf(x) = x (a line with a slope of 11 passing through (1,1)(1,1)).\newlineFor 2x32 \leq x \leq 3, f(x)=x2f(x) = x^2 (a parabola starting at (2,4)(2,4)).Sketch the graph of F(x) by plotting the piecewise function:\newlineFor 0x<10 \leq x < 1, f(x)=1f(x) = 100 (a line with a slope of 11 passing through the origin).\newlineFor 1x<21 \leq x < 2, f(x)=1f(x) = 133 (a parabola starting at (1,1)(1,1)).\newlineFor 2x32 \leq x \leq 3, f(x)=1f(x) = 166 (a cubic function starting at f(x)=1f(x) = 177).

More problems from Transformations of functions