Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

Proof: Let 
int f(x)dx=g(x)+c
Consider R.H.S. : 
int_(0)^(a)f(a-x)dx
put 
a-x=t i.e. 
quad x=a-t

:.quad-dx=dt=>dx=-dt
As 
x varies from 0 to 
a,t varies from a to 0
therefore 
I=int_(a)^(0)f(t)(-dt)

=-int_(a)^(0)f(t)dt

=int_(0)^(a)f(t)dt dots(int_(a)^(b)f(x)dx=-int_(b)^(a)f(x)dx)

=int_(0)^(a)f(x)dx dots as definite integration is

= L.H.S. independent of the variable.
Thus 
int_(0)^(a)f(x)dx=int_(0)^(a)f(a-x)dx

22) 0af(x)dx=0af(ax)dx \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \newlineProof: Let f(x)dx=g(x)+c \int f(x) d x=g(x)+c \newlineConsider R.H.S. : 0af(ax)dx \int_{0}^{a} f(a-x) \mathrm{d} x \newlineput ax=t a-x=t i.e. x=at \quad x=a-t \newlinedx=dtdx=dt \therefore \quad-\mathrm{d} x=\mathrm{d} t \Rightarrow \mathrm{d} x=-\mathrm{d} t \newlineAs x x varies from 00 to a,t a, t varies from a to 00\newlinetherefore I=a0f(t)(dt) I=\int_{a}^{0} f(t)(-\mathrm{d} t) \newline=a0f(t)dt =-\int_{a}^{0} f(t) d t \newlinef(x)dx=g(x)+c \int f(x) d x=g(x)+c 00\newlinef(x)dx=g(x)+c \int f(x) d x=g(x)+c 11 as definite integration is\newlinef(x)dx=g(x)+c \int f(x) d x=g(x)+c 22 L.H.S. independent of the variable.\newlineThus f(x)dx=g(x)+c \int f(x) d x=g(x)+c 33

Full solution

Q. 22) 0af(x)dx=0af(ax)dx \int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x \newlineProof: Let f(x)dx=g(x)+c \int f(x) d x=g(x)+c \newlineConsider R.H.S. : 0af(ax)dx \int_{0}^{a} f(a-x) \mathrm{d} x \newlineput ax=t a-x=t i.e. x=at \quad x=a-t \newlinedx=dtdx=dt \therefore \quad-\mathrm{d} x=\mathrm{d} t \Rightarrow \mathrm{d} x=-\mathrm{d} t \newlineAs x x varies from 00 to a,t a, t varies from a to 00\newlinetherefore I=a0f(t)(dt) I=\int_{a}^{0} f(t)(-\mathrm{d} t) \newline=a0f(t)dt =-\int_{a}^{0} f(t) d t \newlinef(x)dx=g(x)+c \int f(x) d x=g(x)+c 00\newlinef(x)dx=g(x)+c \int f(x) d x=g(x)+c 11 as definite integration is\newlinef(x)dx=g(x)+c \int f(x) d x=g(x)+c 22 L.H.S. independent of the variable.\newlineThus f(x)dx=g(x)+c \int f(x) d x=g(x)+c 33
  1. Given Property Explanation: Let's start with the given property of definite integrals: 0af(x)dx=0af(ax)dx\int_{0}^{a}f(x)dx=\int_{0}^{a}f(a-x)dx.
  2. Antiderivative Assumption: Assume the antiderivative of f(x)f(x) is g(x)+cg(x) + c, where cc is the constant of integration: f(x)dx=g(x)+c\int f(x)\,dx=g(x)+c.
  3. Substitution and Differentiation: Consider the right-hand side (R.H.S.): 0af(ax)dx\int_{0}^{a}f(a-x)\,dx. We'll make a substitution: let t=axt = a - x, which implies x=atx = a - t.
  4. Rewriting Integral with New Limits: Differentiate both sides with respect to xx to find dxdx in terms of dtdt: dx=dt-dx=dt, which gives us dx=dtdx=-dt.
  5. Pulling Out Negative Sign: As xx changes from 00 to aa, tt will change from aa to 00. So, we can rewrite the integral with the new limits: I=a0f(t)(dt)I=\int_{a}^{0}f(t)(-dt).
  6. Flipping Limits of Integration: Now, we'll pull out the negative sign from the integral: I=a0f(t)dtI=-\int_{a}^{0}f(t)\,dt.
  7. Replacing Variable: By the property of definite integrals, we can flip the limits of integration and remove the negative sign: I=0af(t)dtI=\int_{0}^{a}f(t)\,dt.
  8. Final Equality Proof: Since definite integration is independent of the variable, we can replace tt with xx: I=0af(x)dxI=\int_{0}^{a}f(x)\,dx.
  9. Final Equality Proof: Since definite integration is independent of the variable, we can replace tt with xx: I=0af(x)dxI=\int_{0}^{a}f(x)\,dx.We've shown that the right-hand side (R.H.S.) is equal to the left-hand side (L.H.S.), completing the proof: 0af(x)dx=0af(ax)dx\int_{0}^{a}f(x)\,dx=\int_{0}^{a}f(a-x)\,dx.

More problems from Transformations of absolute value functions