Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

In this question you must show all stages of your working.\newlineSolutions relying entirely on calculator technology are not acceptable.\newlinei) Use the substitution \newlineu=ex3u=e^{x}-3 to show that\newlineln5ln74e3xex3dx=a+bln2\int_{\ln 5}^{\ln 7}\frac{4e^{3x}}{e^{x}-3}\,dx=a+b \ln 2\newlinewhere \newlineaa and \newlinebb are constants to be found.

Full solution

Q. In this question you must show all stages of your working.\newlineSolutions relying entirely on calculator technology are not acceptable.\newlinei) Use the substitution \newlineu=ex3u=e^{x}-3 to show that\newlineln5ln74e3xex3dx=a+bln2\int_{\ln 5}^{\ln 7}\frac{4e^{3x}}{e^{x}-3}\,dx=a+b \ln 2\newlinewhere \newlineaa and \newlinebb are constants to be found.
  1. Substitution of uu: Let's start by making the substitution u=ex3u = e^x - 3. We need to express everything in the integral in terms of uu, including the differential dxdx and the limits of integration.
  2. Finding dudx\frac{du}{dx}: First, we find dudx\frac{du}{dx}. Since u=ex3u = e^x - 3, we have dudx=ex\frac{du}{dx} = e^x. Therefore, du=exdxdu = e^x dx.
  3. Changing Limits of Integration: Now we need to change the limits of integration. When x=ln(5)x = \ln(5), u=eln(5)3=53=2u = e^{\ln(5)} - 3 = 5 - 3 = 2. When x=ln(7)x = \ln(7), u=eln(7)3=73=4u = e^{\ln(7)} - 3 = 7 - 3 = 4. So the new limits of integration are from u=2u = 2 to u=4u = 4.
  4. Rewriting Integral in terms of u: We can now rewrite the integral in terms of u. The integral becomes 4e3xex3dx=4e2xexu(duex)=4e2xudu\int \frac{4e^{3x}}{e^{x}-3}dx = \int \frac{4e^{2x} \cdot e^x}{u} \cdot \left(\frac{du}{e^x}\right) = \int \frac{4e^{2x}}{u} du.
  5. Expressing e2xe^{2x} in terms of uu: We need to express e2xe^{2x} in terms of uu. Since u=ex3u = e^x - 3, we have ex=u+3e^x = u + 3. Therefore, e2x=(u+3)2e^{2x} = (u + 3)^2.
  6. Substituting e2xe^{2x} in Integral: Substitute e2xe^{2x} with (u+3)2(u + 3)^2 in the integral. The integral now becomes 4(u+3)2udu\int\frac{4(u + 3)^2}{u}\, du.
  7. Expanding the Integrand: Expand the integrand: 4(u+3)2/u=4(u2+6u+9)/u=4u+24+36/u4(u + 3)^2/u = 4(u^2 + 6u + 9)/u = 4u + 24 + 36/u.
  8. Integrating Term by Term: Now we integrate term by term from u=2u = 2 to u=4u = 4: (4u+24+36u)du=[2u2+24u+36ln(u)]\int(4u + 24 + \frac{36}{u}) du = [2u^2 + 24u + 36\ln(u)] from u=2u = 2 to u=4u = 4.
  9. Evaluating Antiderivative: Evaluate the antiderivative at the upper and lower limits: [2(4)2+24(4)+36ln(4)][2(2)2+24(2)+36ln(2)][2(4)^2 + 24(4) + 36\ln(4)] - [2(2)^2 + 24(2) + 36\ln(2)].
  10. Simplifying Expression: Simplify the expression: [2(16)+96+36ln(4)][2(4)+48+36ln(2)]=[32+96+36ln(4)][8+48+36ln(2)][2(16) + 96 + 36\ln(4)] - [2(4) + 48 + 36\ln(2)] = [32 + 96 + 36\ln(4)] - [8 + 48 + 36\ln(2)].
  11. Combining Like Terms: Combine like terms: 32+96+36ln(4)32 + 96 + 36\ln(4) - 8+48+36ln(2)8 + 48 + 36\ln(2) = 32+9684832 + 96 - 8 - 48 + 3636\ln(44) - 3636\ln(22).
  12. Further Simplification: Further simplify: 120+36ln(4)36ln(2)=120+36(2ln(2))36ln(2)=120+72ln(2)36ln(2)120 + 36\ln(4) - 36\ln(2) = 120 + 36(2\ln(2)) - 36\ln(2) = 120 + 72\ln(2) - 36\ln(2).
  13. Combining Logarithmic Terms: Combine the logarithmic terms: 120+36ln(2)=a+bln(2)120 + 36\ln(2) = a + b \ln(2), where a=120a = 120 and b=36b = 36.

More problems from Simplify radical expressions with variables