Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Generalized Neyman-Pearson Lemma. Let 
f_(0)(x),f_(1)(x),cdots,f_(k)(x) be 
k+1 probability density functions. Let 
phi_(0) be a test function of the form

phi_(0)(x)={[1","," if ",f_(0)(x) > sum_(j=1)^(k)a_(j)f_(j)(x)],[gamma(x)","," if ",f_(0)(x)=sum_(j=1)^(k)a_(j)f_(j)(x)],[0","," if ",f_(0)(x) < sum_(j=1)^(k)a_(j)f_(j)(x)]:}
where 
a_(j) >= 0 for 
j=1,cdots,k. Show that 
phi_(0) maximizes

int phi(x)f_(0)(x)dx
among all 
phi,0 <= phi <= 1, such that

int phi(x)f_(j)(x)dx <= intphi_(0)(x)f_(j)(x)dx,quad j=1,2,cdots,k

Generalized Neyman-Pearson Lemma. Let f0(x),f1(x),,fk(x) f_{0}(x), f_{1}(x), \cdots, f_{k}(x) be k+1 k+1 probability density functions. Let ϕ0 \phi_{0} be a test function of the form\newlineϕ0(x)={1, if f0(x)>j=1kajfj(x)γ(x), if f0(x)=j=1kajfj(x)0, if f0(x)<j=1kajfj(x) \phi_{0}(x)=\left\{\begin{array}{lll} 1, & \text { if } & f_{0}(x)>\sum_{j=1}^{k} a_{j} f_{j}(x) \\ \gamma(x), & \text { if } & f_{0}(x)=\sum_{j=1}^{k} a_{j} f_{j}(x) \\ 0, & \text { if } & f_{0}(x)<\sum_{j=1}^{k} a_{j} f_{j}(x) \end{array}\right. \newlinewhere aj0 a_{j} \geq 0 for j=1,,k j=1, \cdots, k . Show that ϕ0 \phi_{0} maximizes\newlineϕ(x)f0(x)dx \int \phi(x) f_{0}(x) d x \newlineamong all ϕ,0ϕ1 \phi, 0 \leq \phi \leq 1 , such that\newlineϕ(x)fj(x)dxϕ0(x)fj(x)dx,j=1,2,,k \int \phi(x) f_{j}(x) d x \leq \int \phi_{0}(x) f_{j}(x) d x, \quad j=1,2, \cdots, k

Full solution

Q. Generalized Neyman-Pearson Lemma. Let f0(x),f1(x),,fk(x) f_{0}(x), f_{1}(x), \cdots, f_{k}(x) be k+1 k+1 probability density functions. Let ϕ0 \phi_{0} be a test function of the form\newlineϕ0(x)={1, if f0(x)>j=1kajfj(x)γ(x), if f0(x)=j=1kajfj(x)0, if f0(x)<j=1kajfj(x) \phi_{0}(x)=\left\{\begin{array}{lll} 1, & \text { if } & f_{0}(x)>\sum_{j=1}^{k} a_{j} f_{j}(x) \\ \gamma(x), & \text { if } & f_{0}(x)=\sum_{j=1}^{k} a_{j} f_{j}(x) \\ 0, & \text { if } & f_{0}(x)<\sum_{j=1}^{k} a_{j} f_{j}(x) \end{array}\right. \newlinewhere aj0 a_{j} \geq 0 for j=1,,k j=1, \cdots, k . Show that ϕ0 \phi_{0} maximizes\newlineϕ(x)f0(x)dx \int \phi(x) f_{0}(x) d x \newlineamong all ϕ,0ϕ1 \phi, 0 \leq \phi \leq 1 , such that\newlineϕ(x)fj(x)dxϕ0(x)fj(x)dx,j=1,2,,k \int \phi(x) f_{j}(x) d x \leq \int \phi_{0}(x) f_{j}(x) d x, \quad j=1,2, \cdots, k
  1. Understand Problem & Set Equation: Step 11: Understand the problem and set up the equation.\newlineWe need to show that ϕ0\phi_0 maximizes ϕ(x)f0(x)dx\int \phi(x)f_0(x)dx under the constraints ϕ(x)fj(x)dxϕ0(x)fj(x)dx\int \phi(x)f_j(x)dx \leq \int \phi_0(x)f_j(x)dx for j=1,2,,kj=1,2,\ldots,k.
  2. Analyze Test Function: Step 22: Analyze the test function ϕ0\phi_0.\newline\phi_0(x) = \begin{cases} \(\newline1 & \text{if } f_0(x) > \sum_{j=1}^k a_j f_j(x) \\\newline\gamma(x) & \text{if } f_0(x) = \sum_{j=1}^k a_j f_j(x) \\\newline0 & \text{if } f_0(x) < \sum_{j=1}^k a_j f_j(x) \newline\end{cases}\)\newlineThis function is designed to maximize f0(x)f_0(x) whenever possible by assigning the highest weight (11) when f0(x)f_0(x) is greater than the weighted sum of other densities.
  3. Consider Other Test Function: Step 33: Consider any other test function ϕ\phi that satisfies the constraints.\newlineFor any ϕ\phi such that 0ϕ10 \leq \phi \leq 1 and ϕ(x)fj(x)dxϕ0(x)fj(x)dx\int \phi(x)f_j(x)dx \leq \int \phi_0(x)f_j(x)dx, we need to compare ϕ(x)f0(x)dx\int \phi(x)f_0(x)dx to ϕ0(x)f0(x)dx\int \phi_0(x)f_0(x)dx.
  4. Use Properties & Constraints: Step 44: Use the properties of ϕ0\phi_0 and the constraints.\newlineSince ϕ0\phi_0 is maximized at points where f0(x)f_0(x) is highest relative to the other fj(x)f_j(x), any other ϕ\phi that is less than or equal to ϕ0\phi_0 at these points will result in a lower or equal integral value. This is because ϕ\phi cannot exceed 11 and must adhere to the constraints for each fj(x)f_j(x).
  5. Conclude Proof: Step 55: Conclude the proof.\newlineGiven that ϕ0\phi_0 is constructed to maximize f0(x)f_0(x) under the constraints, and any deviation from ϕ0\phi_0 in the form of a lower value would decrease ϕ(x)f0(x)dx\int \phi(x)f_0(x)dx, it follows that ϕ0\phi_0 indeed maximizes the integral among all permissible ϕ\phi.