Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

cos2(x)+sin2(x)=(eix+eix)24+sin2(x)=(e2ix+e2ix)4+e2ln(sin(x))+12\cos^2 (x) + \sin^2 (x) = \frac{(e^{ix} + e^{-ix})^2}{4} + \sin^2 (x) = \frac{(e^{2ix} + e^{-2ix})}{4} + e^{2\ln(\sin(x))} + \frac{1}{2}

Full solution

Q. cos2(x)+sin2(x)=(eix+eix)24+sin2(x)=(e2ix+e2ix)4+e2ln(sin(x))+12\cos^2 (x) + \sin^2 (x) = \frac{(e^{ix} + e^{-ix})^2}{4} + \sin^2 (x) = \frac{(e^{2ix} + e^{-2ix})}{4} + e^{2\ln(\sin(x))} + \frac{1}{2}
  1. Pythagorean Identity: We know from the Pythagorean identity that cos2(x)+sin2(x)=1\cos^2(x) + \sin^2(x) = 1.
  2. Left Side Simplification: So, the left side of the equation simplifies to 11.
  3. Right Side Simplification: Now, let's simplify the right side. Start with the first term: (ei×+ei×)2/4(e^{i\times} + e^{-i\times})^2 / 4.
  4. First Term Simplification: Using the identity (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2, we get (eix)2+2eixeix+(eix)2/4(e^{ix})^2 + 2e^{ix}e^{-ix} + (e^{-ix})^2 / 4.
  5. Term Division: Simplify each term: e2ix+2+e2ix4e^{2ix} + 2 + \frac{e^{-2ix}}{4}.
  6. Combining Like Terms: Now, divide each term by 44: e2ix+2+e2ix4=e2ix4+12+e2ix4\frac{e^{2ix} + 2 + e^{-2ix}}{4} = \frac{e^{2ix}}{4} + \frac{1}{2} + \frac{e^{-2ix}}{4}.
  7. Third Term Simplification: The second term on the right side is already simplified: (e2ix+e2ix)/4(e^{2ix} + e^{-2ix})/4.
  8. Adding Terms: Combine the like terms from the first and second terms on the right side: e2ix4+e2ix4+e2ix4+e2ix4+12\frac{e^{2ix}}{4} + \frac{e^{-2ix}}{4} + \frac{e^{2ix}}{4} + \frac{e^{-2ix}}{4} + \frac{1}{2}.
  9. Substitution: We get 2e2ix4+2e2ix4+12\frac{2e^{2ix}}{4} + \frac{2e^{-2ix}}{4} + \frac{1}{2}.
  10. Constant Combination: Simplify the coefficients: e2ix/2+e2ix/2+1/2e^{2ix}/2 + e^{-2ix}/2 + 1/2.
  11. Isolating cos2(x)\cos^2(x): Now, let's look at the third term on the right side: e2ln(sin(x))e^{2\ln(\sin(x))}.
  12. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.
  13. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).
  14. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.
  15. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.
  16. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.Substitute sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x): e2ix2+e2ix2+1cos2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) + \frac{1}{2}.
  17. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.Substitute sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x): e2ix2+e2ix2+1cos2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) + \frac{1}{2}.Combine the constants: e2ix2+e2ix2+12+12cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \frac{1}{2} + \frac{1}{2} - \cos^2(x).
  18. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.Substitute sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x): e2ix2+e2ix2+1cos2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) + \frac{1}{2}.Combine the constants: e2ix2+e2ix2+12+12cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \frac{1}{2} + \frac{1}{2} - \cos^2(x).We get e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x).
  19. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.Substitute sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x): e2ix2+e2ix2+1cos2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) + \frac{1}{2}.Combine the constants: e2ix2+e2ix2+12+12cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \frac{1}{2} + \frac{1}{2} - \cos^2(x).We get e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x).Now, we have eln(sin2(x))e^{\ln(\sin^2(x))}00 on the left side and e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) on the right side.
  20. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.Substitute sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x): e2ix2+e2ix2+1cos2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) + \frac{1}{2}.Combine the constants: e2ix2+e2ix2+12+12cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \frac{1}{2} + \frac{1}{2} - \cos^2(x).We get e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x).Now, we have eln(sin2(x))e^{\ln(\sin^2(x))}00 on the left side and e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) on the right side.Subtract eln(sin2(x))e^{\ln(\sin^2(x))}00 from both sides to isolate eln(sin2(x))e^{\ln(\sin^2(x))}33: eln(sin2(x))e^{\ln(\sin^2(x))}44.
  21. Final Simplification: Using the property eln(a)=ae^{\ln(a)} = a, we get eln(sin2(x))e^{\ln(\sin^2(x))}.This simplifies to sin2(x)\sin^2(x).Add this to the previous terms: e2ix2+e2ix2+sin2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \sin^2(x) + \frac{1}{2}.We know sin2(x)=1cos2(x)\sin^2(x) = 1 - \cos^2(x) from the Pythagorean identity.Substitute sin2(x)\sin^2(x) with 1cos2(x)1 - \cos^2(x): e2ix2+e2ix2+1cos2(x)+12\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) + \frac{1}{2}.Combine the constants: e2ix2+e2ix2+12+12cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + \frac{1}{2} + \frac{1}{2} - \cos^2(x).We get e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x).Now, we have eln(sin2(x))e^{\ln(\sin^2(x))}00 on the left side and e2ix2+e2ix2+1cos2(x)\frac{e^{2ix}}{2} + \frac{e^{-2ix}}{2} + 1 - \cos^2(x) on the right side.Subtract eln(sin2(x))e^{\ln(\sin^2(x))}00 from both sides to isolate eln(sin2(x))e^{\ln(\sin^2(x))}33: eln(sin2(x))e^{\ln(\sin^2(x))}44.This simplifies to eln(sin2(x))e^{\ln(\sin^2(x))}55.