Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Consider this matrix transformation:

[[-1,0],[0,1]]
What is the geometric effect of this transformation?
Choose 1 answer:
A A reflection across the 
y axis
B A reflection across the line 
y=x
(c) A rotation about the origin by 
90^(@)
(D) A rotation about the origin by 
180^(@)

Consider this matrix transformation:\newline[1001] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \newlineWhat is the geometric effect of this transformation?\newlineChoose 11 answer:\newline(A) A reflection across the y y axis\newline(B) A reflection across the line y=x y=x \newline(C) A rotation about the origin by 90 90^{\circ} \newline(D) A rotation about the origin by 180 180^{\circ}

Full solution

Q. Consider this matrix transformation:\newline[1001] \left[\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right] \newlineWhat is the geometric effect of this transformation?\newlineChoose 11 answer:\newline(A) A reflection across the y y axis\newline(B) A reflection across the line y=x y=x \newline(C) A rotation about the origin by 90 90^{\circ} \newline(D) A rotation about the origin by 180 180^{\circ}
  1. Identify Matrix Elements: Identify the matrix and its elements.\newlineThe given matrix is:\newline[1001] \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \newlineThis is a 22x22 matrix with elements a1111 = 1-1, a1212 = 00, a2121 = 00, and a2222 = 11.
  2. Effect on Basis Vectors: Analyze the effect of the matrix on the basis vectors.\newlineThe effect of the matrix on the x-axis basis vector (11,00) is:\newline[1001][10]=[10] \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \newlineThis means that the x-axis basis vector is reflected across the y-axis.
  3. Effect on x-axis: Analyze the effect of the matrix on the y-axis basis vector.\newlineThe effect of the matrix on the y-axis basis vector (00,11) is:\newline[1001][01]=[01] \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \newlineThis means that the y-axis basis vector remains unchanged.
  4. Effect on y-axis: Determine the geometric effect of the transformation.\newlineSince the xx-axis basis vector is reflected across the yy-axis and the yy-axis basis vector remains unchanged, the overall effect of the transformation is a reflection across the yy-axis.

More problems from Convergent and divergent geometric series