Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Calculate the first four moments about of the following distribution about the mean and hence find 
beta_(1) and 
beta_(2)






x
0
1
2
3
4
5
6
7
8



f
1
8
28
56
70
56
28
8
1




Also find the Karl Pearson's coefficient of skewness and Bowley's coefficient of skewness.

11. Calculate the first four moments about of the following distribution about the mean and hence find β1 \beta_{1} and β2 \beta_{2} \newline\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}\newline\hlinex x & 00 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 \\\newline\hlinef f & 11 & 88 & 2828 & 5656 & 7070 & 5656 & 2828 & 88 & 11 \\\newline\hline\newline\end{tabular}\newlineAlso find the Karl Pearson's coefficient of skewness and Bowley's coefficient of skewness.

Full solution

Q. 11. Calculate the first four moments about of the following distribution about the mean and hence find β1 \beta_{1} and β2 \beta_{2} \newline\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}\newline\hlinex x & 00 & 11 & 22 & 33 & 44 & 55 & 66 & 77 & 88 \\\newline\hlinef f & 11 & 88 & 2828 & 5656 & 7070 & 5656 & 2828 & 88 & 11 \\\newline\hline\newline\end{tabular}\newlineAlso find the Karl Pearson's coefficient of skewness and Bowley's coefficient of skewness.
  1. Calculate Mean: First, let's calculate the mean (μ\mu). To do this, we multiply each value of xx by its frequency ff and sum them up, then divide by the total frequency.\newlineμ=(0×1+1×8+2×28+3×56+4×70+5×56+6×28+7×8+8×1)(1+8+28+56+70+56+28+8+1)\mu = \frac{(0\times1 + 1\times8 + 2\times28 + 3\times56 + 4\times70 + 5\times56 + 6\times28 + 7\times8 + 8\times1)}{(1+8+28+56+70+56+28+8+1)}\newlineμ=(0+8+56+168+280+280+168+56+8)256\mu = \frac{(0 + 8 + 56 + 168 + 280 + 280 + 168 + 56 + 8)}{256}\newlineμ=1024256\mu = \frac{1024}{256}\newlineμ=4\mu = 4
  2. Calculate First Moment: Now, we calculate the first moment about the mean μ1\mu_1, which is always 00 because it's the mean itself.\newlineμ1=0\mu_1 = 0
  3. Calculate Second Moment: Next, we calculate the second moment about the mean μ2\mu_2. This is the variance, which is the sum of each (xμ)2×f(x - \mu)^2 \times f, divided by the total frequency.μ2=[(04)2×1+(14)2×8+(24)2×28+(34)2×56+(44)2×70+(54)2×56+(64)2×28+(74)2×8+(84)2×1]256\mu_2 = \frac{[(0-4)^2\times1 + (1-4)^2\times8 + (2-4)^2\times28 + (3-4)^2\times56 + (4-4)^2\times70 + (5-4)^2\times56 + (6-4)^2\times28 + (7-4)^2\times8 + (8-4)^2\times1]}{256}μ2=[16×1+9×8+4×28+1×56+0×70+1×56+4×28+9×8+16×1]256\mu_2 = \frac{[16\times1 + 9\times8 + 4\times28 + 1\times56 + 0\times70 + 1\times56 + 4\times28 + 9\times8 + 16\times1]}{256}μ2=[16+72+112+56+0+56+112+72+16]256\mu_2 = \frac{[16 + 72 + 112 + 56 + 0 + 56 + 112 + 72 + 16]}{256}μ2=512256\mu_2 = \frac{512}{256}μ2=2\mu_2 = 2

More problems from Evaluate variable expressions for sequences