Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Aufgabe (Differentiation)
(a) Bestimmen Sie die Taylorreihe 
Tf(x) der Funktion


f(x)=(-27x^(3))/(1+3x)
im Entwicklungspunkt 
x_(0)=0 sowie den Konvergenzradius von 
Tf(x).

22. Aufgabe (Differentiation)\newline(a) Bestimmen Sie die Taylorreihe Tf(x) T f(x) der Funktion\newlinef(x)=27x31+3x f(x)=\frac{-27 x^{3}}{1+3 x} \newlineim Entwicklungspunkt x0=0 x_{0}=0 sowie den Konvergenzradius von Tf(x) T f(x) .

Full solution

Q. 22. Aufgabe (Differentiation)\newline(a) Bestimmen Sie die Taylorreihe Tf(x) T f(x) der Funktion\newlinef(x)=27x31+3x f(x)=\frac{-27 x^{3}}{1+3 x} \newlineim Entwicklungspunkt x0=0 x_{0}=0 sowie den Konvergenzradius von Tf(x) T f(x) .
  1. Write Function and Point: Write down the function and the development point.\newlinef(x)=27x31+3xf(x) = \frac{-27x^3}{1+3x}, x0=0x_0 = 0
  2. Find Taylor Series Expansion: Find the Taylor series expansion of f(x)f(x) around x0=0x_0 = 0. The Taylor series expansion of f(x)f(x) at x0x_0 is given by: Tf(x)=f(x0)+f(x0)(xx0)+f(x0)(xx0)22!+f(x0)(xx0)33!+Tf(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)(x - x_0)^2}{2!} + \frac{f(x_0)(x - x_0)^3}{3!} + \ldots
  3. Calculate Derivatives at x0x_0: Calculate the derivatives of f(x)f(x) at x0=0x_0 = 0.\newlinef(x)=27x31+3xf(x) = \frac{-27x^3}{1+3x}\newlinef(x)=ddx[27x31+3x]f'(x) = \frac{d}{dx}\left[\frac{-27x^3}{1+3x}\right]\newlinef(x)=d2dx2[27x31+3x]f''(x) = \frac{d^2}{dx^2}\left[\frac{-27x^3}{1+3x}\right]\newlinef(x)=d3dx3[27x31+3x]f(x) = \frac{d^3}{dx^3}\left[\frac{-27x^3}{1+3x}\right]\newline...\newlineWe will calculate these derivatives and evaluate them at x0=0x_0 = 0.
  4. Calculate f(x0)f(x_0): Calculate f(x0)f(x_0).f(x0)=f(0)=27031+30=0f(x_0) = f(0) = \frac{-27\cdot0^3}{1+3\cdot0} = 0
  5. Calculate f(x0)f'(x_0): Calculate f(x0)f'(x_0).\newlinef'(x) = \frac{d}{dx}\left[\frac{-27x^3}{1+3x}\right] = -27\left(\frac{3x^2(1+3x) - x^3(3)}{(1+3x)^2}\right)\(\newline\$f'(x_0) = f'(0) = -27\left(\frac{3\cdot 0^2(1+3\cdot 0) - 0^3(3)}{(1+3\cdot 0)^2}\right) = 0\)
  6. Calculate \(f''(x_0)\): Calculate \(f''(x_0)\).\(\newline\)\(f''(x) = \frac{d^2}{dx^2}\left[\frac{-27x^3}{1+3x}\right]\)\(\newline\)To calculate this, we need to apply the quotient rule again.
  7. Apply Quotient Rule: Calculate \(f''(x_0)\) using the quotient rule.\(\newline\)\(f''(x) = \frac{d}{dx}\left[-27\left(3x^2(1+3x) - x^3(3)\right)/(1+3x)^2\right]\)\(\newline\)\(f''(x_0) = f''(0) = \frac{d}{dx}\left[-27\left(3x^2(1+3x) - x^3(3)\right)/(1+3x)^2\right]\) at \(x=0\)\(\newline\)We need to simplify this derivative before evaluating at \(x=0\).
  8. Simplify and Evaluate \(f''(x_0)\): Simplify \(f''(x)\) and evaluate at \(x_0\).
    \(f''(x) = \frac{d}{dx}[-81x^2 + 243x^3]/(1+3x)^2\)
    \(f''(x_0) = f''(0) = \frac{d}{dx}[-81x^2 + 243x^3]/(1+3x)^2\) at \(x=0\)
    \(f''(x_0) = -162x + 729x^2\) at \(x=0\)
    \(f''(x_0) = -162\times 0 + 729\times 0^2 = 0\)

More problems from Find derivatives of radical functions