Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve 
C has parametric equations


x=(t^(2)+5)/(t^(2)+1)quad y=(4t)/(t^(2)+1)
Show that all points on 
C satisfy

(x-3)^(2)+y^(2)=4

1313. A curve C C has parametric equations\newlinex=t2+5t2+1y=4tt2+1 x=\frac{t^{2}+5}{t^{2}+1} \quad y=\frac{4 t}{t^{2}+1} \newlineShow that all points on C C satisfy\newline(x3)2+y2=4 (x-3)^{2}+y^{2}=4

Full solution

Q. 1313. A curve C C has parametric equations\newlinex=t2+5t2+1y=4tt2+1 x=\frac{t^{2}+5}{t^{2}+1} \quad y=\frac{4 t}{t^{2}+1} \newlineShow that all points on C C satisfy\newline(x3)2+y2=4 (x-3)^{2}+y^{2}=4
  1. Calculate x3x - 3: We are given the parametric equations for the curve CC:x=t2+5t2+1x = \frac{t^2 + 5}{t^2 + 1}y=4tt2+1y = \frac{4t}{t^2 + 1}We need to show that these satisfy the equation (x3)2+y2=4(x - 3)^2 + y^2 = 4.
  2. Calculate y: First, let's calculate (x3)2(x - 3)^2 using the given expression for x:\newlinex3=(t2+5)(t2+1)3x - 3 = \frac{(t^2 + 5)}{(t^2 + 1)} - 3\newlinex3=(t2+5)3(t2+1)(t2+1)x - 3 = \frac{(t^2 + 5) - 3(t^2 + 1)}{(t^2 + 1)}\newlinex3=(t2+5)(3t2+3)(t2+1)x - 3 = \frac{(t^2 + 5) - (3t^2 + 3)}{(t^2 + 1)}\newlinex3=2t2+2(t2+1)x - 3 = \frac{-2t^2 + 2}{(t^2 + 1)}\newlineNow, we square (x3)(x - 3):\newline(x3)2=(2t2+2)2(t2+1)2(x - 3)^2 = \frac{(-2t^2 + 2)^2}{(t^2 + 1)^2}
  3. Combine x3x - 3 and yy: Next, we calculate y2y^2 using the given expression for yy:
    y=4tt2+1y = \frac{4t}{t^2 + 1}
    y2=[(4t)2(t2+1)2]y^2 = \left[\frac{(4t)^2}{(t^2 + 1)^2}\right]
    y2=16t2(t2+1)2y^2 = \frac{16t^2}{(t^2 + 1)^2}
  4. Simplify numerator: Now, we add (x3)2(x - 3)^2 and y2y^2:
    (x3)2+y2=[(2t2+2)2]/[(t2+1)2]+[16t2]/[(t2+1)2](x - 3)^2 + y^2 = [(-2t^2 + 2)^2] / [(t^2 + 1)^2] + [16t^2] / [(t^2 + 1)^2]
    Since both terms have the same denominator, we can combine them:
    (x3)2+y2=[(2t2+2)2+16t2]/[(t2+1)2](x - 3)^2 + y^2 = [(-2t^2 + 2)^2 + 16t^2] / [(t^2 + 1)^2]
  5. Factorize numerator: We simplify the numerator:\newline(2t2+2)2+16t2=(4t48t2+4)+16t2(-2t^2 + 2)^2 + 16t^2 = (4t^4 - 8t^2 + 4) + 16t^2\newline(2t2+2)2+16t2=4t4+8t2+4(-2t^2 + 2)^2 + 16t^2 = 4t^4 + 8t^2 + 4
  6. Substitute back: We notice that the numerator can be factored:\newline4t4+8t2+4=4(t4+2t2+1)4t^4 + 8t^2 + 4 = 4(t^4 + 2t^2 + 1)\newlineRecognizing that t4+2t2+1t^4 + 2t^2 + 1 is a perfect square, we can write it as:\newline4(t4+2t2+1)=4(t2+1)24(t^4 + 2t^2 + 1) = 4(t^2 + 1)^2
  7. Cancel out terms: Now, we substitute this back into our equation for (x3)2+y2(x - 3)^2 + y^2:(x3)2+y2=4(t2+1)2(t2+1)2(x - 3)^2 + y^2 = \frac{4(t^2 + 1)^2}{(t^2 + 1)^2}We can cancel out the (t2+1)2(t^2 + 1)^2 terms:(x3)2+y2=4(x - 3)^2 + y^2 = 4
  8. Final conclusion: We have shown that for any value of tt, the equation (x3)2+y2=4(x - 3)^2 + y^2 = 4 holds true for the given parametric equations of the curve CC. Therefore, all points on CC satisfy the equation.

More problems from Find the vertex of the transformed function