Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

{:[f^(')(x)=5e^(x)" and "],[f(7)=40+5e^(7).],[f(0)=◻]:}

f(x)=5ex and f(7)=40+5e7.f(0)= \begin{array}{l}f^{\prime}(x)=5 e^{x} \text { and } f(7)=40+5 e^{7} . \\ f(0)=\square\end{array}

Full solution

Q. f(x)=5ex and f(7)=40+5e7.f(0)= \begin{array}{l}f^{\prime}(x)=5 e^{x} \text { and } f(7)=40+5 e^{7} . \\ f(0)=\square\end{array}
  1. Given Derivative and Function Value: We are given the derivative of a function f(x)f(x), which is f(x)=5exf'(x) = 5e^x. We also know the value of the function at x=7x = 7, which is f(7)=40+5e7f(7) = 40 + 5e^7. To find f(0)f(0), we need to integrate the derivative f(x)f'(x) to get the original function f(x)f(x) and then evaluate it at x=0x = 0.
  2. Integrating the Derivative: The integral of f(x)=5exf'(x) = 5e^x with respect to xx is f(x)=5ex+Cf(x) = 5e^x + C, where CC is the constant of integration.
  3. Finding the Constant: To find the constant CC, we use the known value of f(7)=40+5e7f(7) = 40 + 5e^7. We substitute x=7x = 7 into the integrated function and set it equal to 40+5e740 + 5e^7:5e7+C=40+5e7.5e^7 + C = 40 + 5e^7.
  4. Substituting x=0x = 0: Solving for CC, we subtract 5e75e^7 from both sides of the equation:\newlineC=40+5e75e7C = 40 + 5e^7 - 5e^7.
  5. Calculating f(0)f(0): This simplifies to C=40C = 40, since 5e75e7=05e^7 - 5e^7 = 0.
  6. Calculating f(0)f(0): This simplifies to C=40C = 40, since 5e75e7=05e^7 - 5e^7 = 0.Now we have the original function f(x)=5ex+40f(x) = 5e^x + 40. To find f(0)f(0), we substitute x=0x = 0 into the function:\newlinef(0)=5e0+40f(0) = 5e^0 + 40.
  7. Calculating f(0)f(0): This simplifies to C=40C = 40, since 5e75e7=05e^7 - 5e^7 = 0.Now we have the original function f(x)=5ex+40f(x) = 5e^x + 40. To find f(0)f(0), we substitute x=0x = 0 into the function:\newlinef(0)=5e0+40f(0) = 5e^0 + 40.Since e0=1e^0 = 1, the equation simplifies to:\newlinef(0)=5(1)+40f(0) = 5(1) + 40.
  8. Calculating f(0)f(0): This simplifies to C=40C = 40, since 5e75e7=05e^7 - 5e^7 = 0.Now we have the original function f(x)=5ex+40f(x) = 5e^x + 40. To find f(0)f(0), we substitute x=0x = 0 into the function:\newlinef(0)=5e0+40f(0) = 5e^0 + 40.Since e0=1e^0 = 1, the equation simplifies to:\newlinef(0)=5(1)+40f(0) = 5(1) + 40.Calculating the value, we get:\newlinef(0)=5+40f(0) = 5 + 40.
  9. Calculating f(0)f(0): This simplifies to C=40C = 40, since 5e75e7=05e^7 - 5e^7 = 0.Now we have the original function f(x)=5ex+40f(x) = 5e^x + 40. To find f(0)f(0), we substitute x=0x = 0 into the function:\newlinef(0)=5e0+40f(0) = 5e^0 + 40.Since e0=1e^0 = 1, the equation simplifies to:\newlinef(0)=5(1)+40f(0) = 5(1) + 40.Calculating the value, we get:\newlinef(0)=5+40f(0) = 5 + 40.This gives us the final answer:\newlineC=40C = 4000.

More problems from Find higher derivatives of rational and radical functions