Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

A curve is described by the equation in polar coordinates \newliner=2cosθr=2\cos \theta. Determine y(θ)y(\theta) and dydθ\frac{dy}{d\theta} when θ=4π3\theta=\frac{4\pi}{3} and answer the analysis question below. Write your answers as exact values or rounded to three decimal places.\newline y(θ)=(4π3),= dydθ=,dydθθ=4π3=\ y(\theta)\quad=\square\left(\frac{4\pi}{3}\right),=\square \ \frac{dy}{d\theta}\quad=\square,\left.\frac{dy}{d\theta}\right|_{\theta=\frac{4\pi}{3}}=\square

Full solution

Q. A curve is described by the equation in polar coordinates \newliner=2cosθr=2\cos \theta. Determine y(θ)y(\theta) and dydθ\frac{dy}{d\theta} when θ=4π3\theta=\frac{4\pi}{3} and answer the analysis question below. Write your answers as exact values or rounded to three decimal places.\newline y(θ)=(4π3),= dydθ=,dydθθ=4π3=\ y(\theta)\quad=\square\left(\frac{4\pi}{3}\right),=\square \ \frac{dy}{d\theta}\quad=\square,\left.\frac{dy}{d\theta}\right|_{\theta=\frac{4\pi}{3}}=\square
  1. Convert to Rectangular Coordinates: Convert the polar equation r=2cos(θ)r=2\cos(\theta) to rectangular coordinates to find y(θ)y(\theta). Use the relationship y=rsin(θ)y = r\sin(\theta).
  2. Differentiate with Product Rule: Differentiate r=2cos(θ)r=2\cos(\theta) with respect to θ\theta to find dydθ\frac{dy}{d\theta}. Use the product rule for differentiation: d(rsin(θ))d(θ)=drd(θ)sin(θ)+rcos(θ)\frac{d(r\sin(\theta))}{d(\theta)} = \frac{dr}{d(\theta)} \sin(\theta) + r \cos(\theta).
  3. Analyze Movement at (4π)/(3)(4\pi)/(3): Analyze the movement of the curve at θ=(4π)/(3)\theta=(4\pi)/(3). Since (dy)/(dθ)(dy)/(d\theta) is negative, the curve is moving downward.

More problems from Interpret confidence intervals for population means