Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

[-/1 Points]
DETAILS
MY NOTES
SCALCET9 15.xP.3.007.
Evaluate the given integral by changing to polar coordinates.

∬_(R)sqrt(16-x^(2)-y^(2))" dA where "R={(x,y)∣x^(2)+y^(2) <= 16,x >= 0}", "

11.\newline[-/11 Points]\newlineDETAILS\newlineMY NOTES\newlineSCALCET99 1515.xP.33.007007.\newlineEvaluate the given integral by changing to polar coordinates.\newlineR16x2y2 dA where R={(x,y)x2+y216,x0} \iint_{R} \sqrt{16-x^{2}-y^{2}} \text { dA where } R=\left\{(x, y) \mid x^{2}+y^{2} \leq 16, x \geq 0\right\} \text {, }

Full solution

Q. 11.\newline[-/11 Points]\newlineDETAILS\newlineMY NOTES\newlineSCALCET99 1515.xP.33.007007.\newlineEvaluate the given integral by changing to polar coordinates.\newlineR16x2y2 dA where R={(x,y)x2+y216,x0} \iint_{R} \sqrt{16-x^{2}-y^{2}} \text { dA where } R=\left\{(x, y) \mid x^{2}+y^{2} \leq 16, x \geq 0\right\} \text {, }
  1. Convert to Polar Coordinates: The region RR is a semicircle with radius 44 in the first quadrant. To change to polar coordinates, use x=rcos(θ)x = r\cos(\theta) and y=rsin(θ)y = r\sin(\theta).
  2. Set Up Integral: The integral in polar coordinates becomes R16r2rdrdθ\iint_{R} \sqrt{16 - r^2} r \, dr \, d\theta, with rr from 00 to 44 and θ\theta from 00 to π2\frac{\pi}{2}.
  3. Integrate with Respect to rr: Set up the integral: 0π/20416r2rdrdθ\int_{0}^{\pi/2} \int_{0}^{4} \sqrt{16 - r^2} r \, dr \, d\theta.
  4. Evaluate Inner Integral: Integrate with respect to rr first: 0π/2[(13)(16r2)32]\int_{0}^{\pi/2} \left[\left(-\frac{1}{3}\right)\left(16 - r^2\right)^{\frac{3}{2}}\right] from r=0r=0 to r=4r=4 dθd\theta.
  5. Simplify Expression: Evaluate the inner integral: \int_{\(0\)}^{\pi/\(2\)} \left[\left(-\frac{\(1\)}{\(3\)}\right)\left(\(16 - 1616\right)^{\frac{33}{22}} - \left(-\frac{11}{33}\right)\left(1616 - 00\right)^{\frac{33}{22}}\right] d\theta.
  6. Integrate with Respect to θ\theta: Simplify the expression: 0π/2[0(13)(16)32]dθ\int_{0}^{\pi/2} [0 - (-\frac{1}{3})(16)^{\frac{3}{2}}] d\theta.
  7. Evaluate Outer Integral: The integral simplifies to (163)320π2dθ(\frac{16}{3})^{\frac{3}{2}} \int_{0}^{\frac{\pi}{2}} d\theta.
  8. Calculate Final Value: Integrate with respect to θ\theta: (163)32[θ]\left(\frac{16}{3}\right)^{\frac{3}{2}} [\theta] from 00 to π2\frac{\pi}{2}.
  9. Calculate Final Value: Integrate with respect to θ\theta: (163)32[θ]\left(\frac{16}{3}\right)^{\frac{3}{2}} [\theta] from 00 to π2\frac{\pi}{2}.Evaluate the outer integral: (163)32[π20]\left(\frac{16}{3}\right)^{\frac{3}{2}} \left[\frac{\pi}{2} - 0\right].
  10. Calculate Final Value: Integrate with respect to θ\theta: (163)32[θ](\frac{16}{3})^{\frac{3}{2}} [\theta] from 00 to π2\frac{\pi}{2}.Evaluate the outer integral: (163)32[π20](\frac{16}{3})^{\frac{3}{2}} [\frac{\pi}{2} - 0].Calculate the final value: (163)32×π2(\frac{16}{3})^{\frac{3}{2}} \times \frac{\pi}{2}.

More problems from Transformations of quadratic functions