Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

y=sqrt(4x+1)

(dy)/(dx)=?
Choose 1 answer:
(A) 
(2)/(sqrt(4x+1))
(B) 
2sqrt(4x+1)
(C) 
(2)/(sqrtx)
(D) 
(1)/(2sqrt(4x+1))

y=4x+1 y=\sqrt{4 x+1} \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 24x+1 \frac{2}{\sqrt{4 x+1}} \newline(B) 24x+1 2 \sqrt{4 x+1} \newline(C) 2x \frac{2}{\sqrt{x}} \newline(D) 124x+1 \frac{1}{2 \sqrt{4 x+1}}

Full solution

Q. y=4x+1 y=\sqrt{4 x+1} \newlinedydx=? \frac{d y}{d x}=? \newlineChoose 11 answer:\newline(A) 24x+1 \frac{2}{\sqrt{4 x+1}} \newline(B) 24x+1 2 \sqrt{4 x+1} \newline(C) 2x \frac{2}{\sqrt{x}} \newline(D) 124x+1 \frac{1}{2 \sqrt{4 x+1}}
  1. Apply Chain Rule: To find the derivative of yy with respect to xx, we will use the chain rule. The chain rule states that the derivative of a composite function is the derivative of the outer function evaluated at the inner function times the derivative of the inner function.
  2. Identify Outer and Inner Functions: The outer function is the square root function, and the inner function is (4x+1)(4x+1). The derivative of the outer function, u\sqrt{u}, with respect to uu is (1/2)u(1/2)\sqrt{u}. The derivative of the inner function, 4x+14x+1, with respect to xx is 44.
  3. Calculate Derivative: Applying the chain rule, we multiply the derivative of the outer function by the derivative of the inner function. This gives us (12)4x+1×4(\frac{1}{2})\sqrt{4x+1} \times 4.
  4. Simplify Expression: Simplify the expression by multiplying (12)(\frac{1}{2}) by 44, which gives us 22. So the derivative is 24x+1\frac{2}{\sqrt{4x+1}}.