Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

What is the area of the region between the graphs of 
f(x)=sqrt(x+10) and 
g(x)=x-2 from 
x=-10 to 
x=6 ?
Choose 1 answer:
(A) 
128
(B) 
(64)/(3)
(C) 
(320)/(3)
(D) 160

What is the area of the region between the graphs of f(x)=x+10 f(x)=\sqrt{x+10} and g(x)=x2 g(x)=x-2 from x=10 x=-10 to x=6 x=6 ?\newlineChoose 11 answer:\newline(A) 128 \mathbf{1 2 8} \newline(B) 643 \frac{64}{3} \newline(C) 3203 \frac{320}{3} \newline(D) 160160

Full solution

Q. What is the area of the region between the graphs of f(x)=x+10 f(x)=\sqrt{x+10} and g(x)=x2 g(x)=x-2 from x=10 x=-10 to x=6 x=6 ?\newlineChoose 11 answer:\newline(A) 128 \mathbf{1 2 8} \newline(B) 643 \frac{64}{3} \newline(C) 3203 \frac{320}{3} \newline(D) 160160
  1. Understand the problem: Understand the problem.\newlineWe need to find the area between two curves, f(x)f(x) and g(x)g(x), over the interval from x=10x=-10 to x=6x=6. The area between two curves is given by the integral of the upper function minus the lower function over the interval of interest.
  2. Determine upper and lower functions: Determine which function is the upper function and which is the lower function on the interval from x=10x=-10 to x=6x=6. Since f(x)=x+10f(x) = \sqrt{x+10} is always positive or zero for xx in the interval [10,6][-10, 6], and g(x)=x2g(x) = x-2 can be negative, zero, or positive in this interval, we need to compare the values of f(x)f(x) and g(x)g(x) to determine which one is the upper function. For x=10x=-10, f(x)=0f(x)=0 and x=6x=600, so f(x)f(x) is above g(x)g(x). For x=6x=6, x=6x=644 and x=6x=655, so f(x)f(x) is still above g(x)g(x). Therefore, f(x)f(x) is the upper function and g(x)g(x) is the lower function on the entire interval.
  3. Set up integral: Set up the integral to find the area between the curves.\newlineThe area AA between the curves is given by the integral from x=10x=-10 to x=6x=6 of (f(x)g(x))dx(f(x) - g(x)) \, dx, which is:\newlineA=106(x+10(x2))dxA = \int_{-10}^{6} (\sqrt{x+10} - (x-2)) \, dx
  4. Calculate integral: Calculate the integral.\newlineWe need to calculate the integral A=106(x+10(x2))dxA = \int_{-10}^{6} (\sqrt{x+10} - (x-2)) \, dx. This requires us to integrate each term separately and then combine the results.
  5. Integrate x+10\sqrt{x+10}: Integrate the first term, x+10\sqrt{x+10}. The integral of x+10\sqrt{x+10} with respect to xx from 10-10 to 66 is: 106x+10dx=[23(x+10)32]106\int_{-10}^{6} \sqrt{x+10} \, dx = \left[\frac{2}{3} \cdot (x+10)^{\frac{3}{2}}\right]_{-10}^{6} Evaluating this from 10-10 to 66 gives: [23(6+10)32][23(0)]=[231632]=[2364]=1283\left[\frac{2}{3} \cdot (6+10)^{\frac{3}{2}}\right] - \left[\frac{2}{3} \cdot (0)\right] = \left[\frac{2}{3} \cdot 16^{\frac{3}{2}}\right] = \left[\frac{2}{3} \cdot 64\right] = \frac{128}{3}
  6. Integrate (x2)(x-2): Integrate the second term, (x2)(x-2). The integral of (x2)(x-2) with respect to xx from 10-10 to 66 is: 106(x2)dx=[12x22x]106\int_{-10}^{6} (x-2) \, dx = \left[\frac{1}{2} \cdot x^2 - 2x\right]_{-10}^{6} Evaluating this from 10-10 to 66 gives: [126226][12(10)22(10)]=[1812][50+20]=670=64\left[\frac{1}{2} \cdot 6^2 - 2\cdot6\right] - \left[\frac{1}{2} \cdot (-10)^2 - 2\cdot(-10)\right] = [18 - 12] - [50 + 20] = 6 - 70 = -64
  7. Combine integral results: Combine the results of the integrals to find the total area.\newlineThe total area AA is the difference between the two integrals we just calculated:\newlineA=(1283)(64)=1283+64=1283+1923=3203A = (\frac{128}{3}) - (-64) = \frac{128}{3} + 64 = \frac{128}{3} + \frac{192}{3} = \frac{320}{3}
  8. Choose correct answer: Choose the correct answer from the given options.\newlineThe calculated area is 3203\frac{320}{3}, which corresponds to option (C).

More problems from Euler's method