Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use the first derivative test to find and classify all local extrema in the interval 
(0,4) for the function


f(x)=-3x^(4)ln(3x)

1515. Use the first derivative test to find and classify all local extrema in the interval (0,4) (0,4) for the function\newlinef(x)=3x4ln(3x) f(x)=-3 x^{4} \ln (3 x)

Full solution

Q. 1515. Use the first derivative test to find and classify all local extrema in the interval (0,4) (0,4) for the function\newlinef(x)=3x4ln(3x) f(x)=-3 x^{4} \ln (3 x)
  1. Find First Derivative: To find the local extrema, we first need to find the first derivative of the function f(x)=3x4ln(3x)f(x) = -3x^{4}\ln(3x). Using the product rule for differentiation, where if f(x)=u(x)v(x)f(x) = u(x)v(x), then f(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x), we can find the derivative of f(x)f(x). Let u(x)=3x4u(x) = -3x^{4} and v(x)=ln(3x)v(x) = \ln(3x). Then we need to find u(x)u'(x) and v(x)v'(x).
  2. Apply Product Rule: First, we find u(x)u'(x). Since u(x)=3x4u(x) = -3x^{4}, the derivative u(x)u'(x) is found by bringing down the exponent and reducing the exponent by one.\newlineu(x)=3×4x41=12x3.u'(x) = -3 \times 4x^{4-1} = -12x^{3}.
  3. Find u(x)u'(x) and v(x)v'(x): Next, we find v(x)v'(x). Since v(x)=ln(3x)v(x) = \ln(3x), we use the chain rule for differentiation, which states that if v(x)=ln(g(x))v(x) = \ln(g(x)), then v(x)=g(x)g(x)v'(x) = \frac{g'(x)}{g(x)}. Here, g(x)=3xg(x) = 3x, so g(x)=3g'(x) = 3. Therefore, v(x)=33x=1xv'(x) = \frac{3}{3x} = \frac{1}{x}.
  4. Calculate f(x)f'(x): Now we can find f(x)f'(x) using the product rule.\newlinef(x)=u(x)v(x)+u(x)v(x)f'(x) = u'(x)v(x) + u(x)v'(x)\newline =(12x3)ln(3x)+(3x4)(1x)= (-12x^{3}) \cdot \ln(3x) + (-3x^{4}) \cdot (\frac{1}{x})\newline =12x3ln(3x)3x3= -12x^{3}\ln(3x) - 3x^{3}.
  5. Find Critical Points: To find the critical points, we set f(x)f'(x) to zero and solve for xx. \newline0=12x3ln(3x)3x30 = -12x^{3}\ln(3x) - 3x^{3}\newline0=x3(12ln(3x)3).0 = x^{3}(-12\ln(3x) - 3).
  6. Solve for x: Since x3x^{3} is never zero in the interval (0,4)(0,4), we can divide both sides by x3x^{3} to find the critical points.\newline0=12ln(3x)30 = -12\ln(3x) - 3\newline12ln(3x)=312\ln(3x) = -3\newlineln(3x)=14.\ln(3x) = -\frac{1}{4}.
  7. Check Interval: To solve for xx, we exponentiate both sides of the equation.eln(3x)=e(1/4)e^{\ln(3x)} = e^{(-1/4)} 3x=e(1/4).3x = e^{(-1/4)}.
  8. Classify Critical Point: Now we solve for xx.x=e(14)3x = \frac{e^{(-\frac{1}{4})}}{3}.
  9. Use First Derivative Test: We need to check if this critical point is in the interval (0,4)(0,4). Since e(1/4)e^{(-1/4)} is a positive number less than 11, and we are dividing by 33, the critical point x=e(1/4)/3x = e^{(-1/4)} / 3 is indeed in the interval (0,4)(0,4).
  10. Choose Test Points: To classify the critical point, we use the first derivative test. We need to check the sign of f(x)f'(x) to the left and right of the critical point x=e1/4/3x = e^{-1/4} / 3.
  11. Evaluate f(x1)f'(x_1): Choose test points x1x_1 and x2x_2 such that 0<x1<e1/4/3<x2<40 < x_1 < e^{-1/4} / 3 < x_2 < 4 and evaluate f(x1)f'(x_1) and f(x2)f'(x_2). Let's choose x1=e1/4/6x_1 = e^{-1/4} / 6 and x2=e1/4/2x_2 = e^{-1/4} / 2.
  12. Evaluate f(x2)f'(x_2): Evaluate f(x1)=12x13ln(3x1)3x13f'(x_1) = -12x_1^{3}\ln(3x_1) - 3x_1^{3}.\newlineSince ln(3x1)\ln(3x_1) is negative (because 3x1<13x_1 < 1) and x13x_1^{3} is positive, f(x1)f'(x_1) will be positive.
  13. Evaluate f(x2)f'(x_2): Evaluate f(x1)=12x13ln(3x1)3x13f'(x_1) = -12x_1^{3}\ln(3x_1) - 3x_1^{3}. Since ln(3x1)\ln(3x_1) is negative (because 3x1<13x_1 < 1) and x13x_1^{3} is positive, f(x1)f'(x_1) will be positive.Evaluate f(x2)=12x23ln(3x2)3x23f'(x_2) = -12x_2^{3}\ln(3x_2) - 3x_2^{3}. Since ln(3x2)\ln(3x_2) is negative (because 3x2<e3x_2 < e) and x23x_2^{3} is positive, f(x2)f'(x_2) will be positive.

More problems from Find derivatives of exponential functions