Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

Use the error formula to find n n such that the error is less than or equal to 0.00001 0.00001 using the Trapezoidal Rule.\newline0π2sinxdx \int_{0}^{\frac{\pi}{2}}\sin x\,dx

Full solution

Q. Use the error formula to find n n such that the error is less than or equal to 0.00001 0.00001 using the Trapezoidal Rule.\newline0π2sinxdx \int_{0}^{\frac{\pi}{2}}\sin x\,dx
  1. Error Bound Calculation: The error bound for the Trapezoidal Rule is given by:\newlineEt(ba)312n2maxf(x)E_t \leq \frac{(b-a)^3}{12n^2} \cdot \max|f''(x)| on [a,b][a, b]\newlineHere, a=0a = 0, b=π2b = \frac{\pi}{2}, and we need to find maxf(x)\max|f''(x)| for f(x)=sin(x)f(x) = \sin(x).
  2. Second Derivative of sin(x)\sin(x): The second derivative of f(x)=sin(x)f(x) = \sin(x) is f(x)=sin(x)f''(x) = -\sin(x). The maximum value of f(x)|f''(x)| on [0,π2][0, \frac{\pi}{2}] is 11 since sin(x)1|\sin(x)| \leq 1 for all xx.
  3. Error Formula Substitution: Now, plug in the values into the error formula:\newlineEt(π20)3/(12n2)×1E_t \leq (\frac{\pi}{2} - 0)^3 / (12n^2) \times 1\newlineWe want Et0.00001E_t \leq 0.00001.
  4. Solving for n: Solve for n:\newline0.00001(π2)3/(12n2)0.00001 \geq \left(\frac{\pi}{2}\right)^3 / (12n^2)\newlinen2(π2)3/(12×0.00001)n^2 \geq \left(\frac{\pi}{2}\right)^3 / (12 \times 0.00001)\newlinen(π2)3/(12×0.00001)n \geq \sqrt{\left(\frac{\pi}{2}\right)^3 / (12 \times 0.00001)}
  5. Calculating n: Calculate n:\newlinen(π2)3/(0.00012)n \geq \sqrt{\left(\frac{\pi}{2}\right)^3 / (0.00012)}\newlinen(π38×0.00012)n \geq \sqrt{\left(\frac{\pi^3}{8 \times 0.00012}\right)}\newlinen(π30.00096)n \geq \sqrt{\left(\frac{\pi^3}{0.00096}\right)}

More problems from Conjugate root theorems