Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

These are the component forms of vectors 
vec(p) and 
vec(q) :

{:[ vec(p)=(-1","-4)],[ vec(q)=(-2","2)]:}
Subtract the vectors.

vec(p)- vec(q)=(◻,

These are the component forms of vectors p \vec{p} and q \vec{q} :\newlinep=(1,4)q=(2,2) \begin{array}{l} \vec{p}=(-1,-4) \\ \vec{q}=(-2,2) \end{array} \newlineSubtract the vectors.\newlinepq=(,) \vec{p}-\vec{q}=(\square, \square)

Full solution

Q. These are the component forms of vectors p \vec{p} and q \vec{q} :\newlinep=(1,4)q=(2,2) \begin{array}{l} \vec{p}=(-1,-4) \\ \vec{q}=(-2,2) \end{array} \newlineSubtract the vectors.\newlinepq=(,) \vec{p}-\vec{q}=(\square, \square)
  1. Identify vector components: Identify the components of vectors pp and qq. Vector pp has components (1,4)(-1, -4) and vector qq has components (2,2)(-2, 2).
  2. Subtract vector components: Subtract the components of vector qq from the components of vector pp. To subtract two vectors, subtract their corresponding components. So we calculate: pq=(1(2),42)\vec{p} - \vec{q} = (-1 - (-2), -4 - 2)
  3. Perform component subtraction: Perform the subtraction for each component.\newlineFor the x-component: 1(2)=1+2=1-1 - (-2) = -1 + 2 = 1\newlineFor the y-component: 42=6-4 - 2 = -6
  4. Write result as component form: Write the result as the component form of the new vector. pq=(1,6)\vec{p} - \vec{q} = (1, -6)

More problems from Domain and range