Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

The present value 
PV of a capital asset that provides a perpetual stream of revenue that flows continuously at a rate of 
R(t) dollars per year is given by

PV=int_(0)^(oo)R(t)e^(-rt)dt
where 
r, expressed as a decimal, is the annual rate of interest compounded continuously.
(a) Find the present value of the asset if it provides a constant return of 
$110 per year and 
r=9%.
(Use decimal notation. Give your answer to the nearest dollar.)

PV=
dollars
(b) Find the present value of the asset if it provides a return of 
R(t)=1100+70 t dollars per year and 
r=6%.
(Use decimal notation. Give your answer to the nearest dollar.)

PV=
dollars

The present value PV P V of a capital asset that provides a perpetual stream of revenue that flows continuously at a rate of R(t) R(t) dollars per year is given by\newlinePV=0R(t)ertdt P V=\int_{0}^{\infty} R(t) e^{-r t} d t \newlinewhere r r , expressed as a decimal, is the annual rate of interest compounded continuously.\newline(a) Find the present value of the asset if it provides a constant return of $110 \$ 110 per year and r=9% r=9 \% .\newline(Use decimal notation. Give your answer to the nearest dollar.)\newlinePV= P V= \newlinedollars\newline(b) Find the present value of the asset if it provides a return of R(t)=1100+70t R(t)=1100+70 t dollars per year and r=6% r=6 \% .\newline(Use decimal notation. Give your answer to the nearest dollar.)\newlinePV= P V= \newlinedollars

Full solution

Q. The present value PV P V of a capital asset that provides a perpetual stream of revenue that flows continuously at a rate of R(t) R(t) dollars per year is given by\newlinePV=0R(t)ertdt P V=\int_{0}^{\infty} R(t) e^{-r t} d t \newlinewhere r r , expressed as a decimal, is the annual rate of interest compounded continuously.\newline(a) Find the present value of the asset if it provides a constant return of $110 \$ 110 per year and r=9% r=9 \% .\newline(Use decimal notation. Give your answer to the nearest dollar.)\newlinePV= P V= \newlinedollars\newline(b) Find the present value of the asset if it provides a return of R(t)=1100+70t R(t)=1100+70 t dollars per year and r=6% r=6 \% .\newline(Use decimal notation. Give your answer to the nearest dollar.)\newlinePV= P V= \newlinedollars
  1. Calculate Constant Return PV: Let's solve part (a) of the problem where the asset provides a constant return of $110\$110 per year and the annual interest rate rr is 9%9\% or 0.090.09 in decimal form.\newlineThe present value (PV) formula for a constant return is:\newlinePV=0R(t)e(rt)dtPV = \int_{0}^{\infty} R(t) * e^{(-rt)} dt\newlineSince R(t)R(t) is constant at $110\$110 per year, the equation simplifies to:\newlinePV=0110e(0.09t)dtPV = \int_{0}^{\infty} 110 * e^{(-0.09t)} dt
  2. Solve Integral for Constant Return: To solve the integral, we use the formula for the integral of an exponential function:\newlineeatdt=1aeat+C\int e^{at} dt = \frac{1}{a} \cdot e^{at} + C\newlineApplying this to our integral, we get:\newlinePV=1100e0.09tdtPV = 110 \cdot \int_{0}^{\infty} e^{-0.09t} dt\newline = 110110 \cdot \left[\left(-\frac{11}{00.0909}\right) \cdot e^{0-0.0909t}\right]_{00}^{\infty}
  3. Evaluate Integral Limits: Now we evaluate the expression at the limits of integration:\newlinePV = \(110 \times \left[\left(-\frac{11}{00.0909}\right) \times e^{(0-0.0909 \times \infty)} - \left(-\frac{11}{00.0909}\right) \times e^{(0-0.0909 \times 00)}\right]\newline = 110110 \times \left[00 - \left(-\frac{11}{00.0909}\right)\right]\newline = 110110 \times \left(\frac{11}{00.0909}\right)
  4. Find Present Value: Simplifying the expression, we find the present value:\newlinePV=110×(10.09)PV = 110 \times \left(\frac{1}{0.09}\right)\newline =110×11.1111= 110 \times 11.1111\ldots\newline 1222.22\approx 1222.22
  5. Calculate Variable Return PV: Rounding to the nearest dollar, the present value for part (a) is:\newlinePV$1222PV \approx \$1222
  6. Split Integral for Variable Return: Now let's solve part (b) where the return is given by R(t)=1100+70tR(t) = 1100 + 70t dollars per year and the annual interest rate rr is 6%6\% or 0.060.06 in decimal form.\newlineThe present value (PV) formula for a variable return is the same:\newlinePV=0R(t)e(rt)dtPV = \int_{0}^{\infty} R(t) \cdot e^{(-rt)} dt\newlineSubstituting R(t)R(t) with 1100+70t1100 + 70t, we get:\newlinePV=0(1100+70t)e(0.06t)dtPV = \int_{0}^{\infty} (1100 + 70t) \cdot e^{(-0.06t)} dt
  7. Solve Integral 11: This integral is more complex because it involves both a constant and a linear term. We can split the integral into two parts:\newlinePV=01100e0.06tdt+070te0.06tdtPV = \int_{0}^{\infty} 1100 \cdot e^{-0.06t} \, dt + \int_{0}^{\infty} 70t \cdot e^{-0.06t} \, dt
  8. Apply Integration by Parts: The first integral is similar to the one we solved in part (a), so we can solve it in the same way:\newlinePV1=1100×0e(0.06t)dtPV1 = 1100 \times \int_{0}^{\infty} e^{(-0.06t)} dt\newline = 1100×[10.06×e(0.06t)]1100 \times \left[\frac{-1}{0.06} \times e^{(-0.06t)}\right] from 00 to \infty\newline = 1100×(10.06)1100 \times \left(\frac{1}{0.06}\right)\newline 18333.33\approx 18333.33
  9. Evaluate Integral 22: The second integral requires integration by parts, which is given by:\newlineudv=uvvdu\int u \, dv = uv - \int v \, du\newlineLet's choose u=tu = t and dv=70e(0.06t)dtdv = 70 \cdot e^{(-0.06t)} \, dt. Then du=dtdu = dt and v=10.06e(0.06t)v = \frac{-1}{0.06} \cdot e^{(-0.06t)}.
  10. Add Present Value Parts: Applying integration by parts, we get:\newlinePV2=0t70e(0.06t)dtPV_2 = \int_{0}^{\infty} t \cdot 70 \cdot e^{(-0.06t)} \, dt\newline = 70[t(10.06)e(0.06t)(10.06)e(0.06t)dt]070 \cdot \left[ t \cdot \left(-\frac{1}{0.06}\right) \cdot e^{(-0.06t)} - \int \left(-\frac{1}{0.06}\right) \cdot e^{(-0.06t)} \, dt\right]_{0}^{\infty}
  11. Round to Nearest Dollar: Evaluating the integral and the limits, we find:\newlinePV2 = 70 \times [0 - 0 - ((-1/0.06) \times (-1/0.06) \times e^{(-0.06 \times 0)} - 0)]\(\newline = 70 \times [(1/0.06)^2]\newline \approx 19444.44\)
  12. Round to Nearest Dollar: Evaluating the integral and the limits, we find:\newlinePV2 = 70 \times [0 - 0 - ((-1/0.06) \times (-1/0.06) \times e^{(-0.06 \times 0)} - 0)]\(\newline = 70 \times [(1/0.06)^2]\newline \approx 19444.44\)Adding the two parts of the present value together:\newlinePV = PV1 + PV2\(\newline \approx 18333.33 + 19444.44\newline \approx 37777.77\)
  13. Round to Nearest Dollar: Evaluating the integral and the limits, we find:\newlinePV2 = 70 \times [0 - 0 - ((-1/0.06) \times (-1/0.06) \times e^{(-0.06 \times 0)} - 0)]\(\newline = 70 \times [(1/0.06)^2]\newline \approx 19444.44\)Adding the two parts of the present value together:\newlinePV = PV1 + PV2\(\newline \approx 18333.33 + 19444.44\newline \approx 37777.77\)Rounding to the nearest dollar, the present value for part (b) is:\newlinePV$(37778)PV \approx \$(37778)

More problems from Evaluate a linear function: word problems