Bytelearn - cat image with glassesAI tutor

Welcome to Bytelearn!

Let’s check out your problem:

tentukan laju perubahan maksimum f(x,y,z)=ln(2x+3yz)f(x, y, z) = \ln \left(\frac{2x+3y}{z}\right) di titik (2,7,4)(2, 7, 4) dan arah yang menyebabkan laju perubahan maksimum

Full solution

Q. tentukan laju perubahan maksimum f(x,y,z)=ln(2x+3yz)f(x, y, z) = \ln \left(\frac{2x+3y}{z}\right) di titik (2,7,4)(2, 7, 4) dan arah yang menyebabkan laju perubahan maksimum
  1. Calculate gradient vector: To find the maximum rate of change, we need to calculate the gradient of f(x,y,z)f(x, y, z). The gradient is a vector of partial derivatives.
  2. Find partial derivatives: First, let's find the partial derivative of ff with respect to xx: fx=1z22x+3y\frac{\partial f}{\partial x} = \frac{1}{z} \cdot \frac{2}{2x+3y}.
  3. Calculate at point (2,7,4)(2, 7, 4): At the point (2,7,4)(2, 7, 4), fx=14(24+21)=150\frac{\partial f}{\partial x} = \frac{1}{4} \cdot \left(\frac{2}{4+21}\right) = \frac{1}{50}.
  4. Find gradient vector: Now, let's find the partial derivative of ff with respect to yy: fy=(1z)(32x+3y)\frac{\partial f}{\partial y} = \left(\frac{1}{z}\right) \cdot \left(\frac{3}{2x+3y}\right).
  5. Determine maximum rate of change: At the point (2,7,4)(2, 7, 4), fy=(14)(34+21)=3100\frac{\partial f}{\partial y} = \left(\frac{1}{4}\right) * \left(\frac{3}{4+21}\right) = \frac{3}{100}.
  6. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=(ln(2x+3y))/z2\frac{\partial f}{\partial z} = -\left(\ln(2x+3y)\right)/z^2.
  7. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=ln(2x+3y)z2\frac{\partial f}{\partial z} = -\frac{\ln(2x+3y)}{z^2}.At the point (2,7,4)(2, 7, 4), fz=ln(4+21)16=ln(25)16\frac{\partial f}{\partial z} = -\frac{\ln(4+21)}{16} = -\frac{\ln(25)}{16}.
  8. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=ln(2x+3y)z2\frac{\partial f}{\partial z} = -\frac{\ln(2x+3y)}{z^2}.At the point (2,7,4)(2, 7, 4), fz=ln(4+21)16=ln(25)16\frac{\partial f}{\partial z} = -\frac{\ln(4+21)}{16} = -\frac{\ln(25)}{16}.The gradient vector at the point (2,7,4)(2, 7, 4) is \(\newlineabla f = \left(\frac{1}{50}, \frac{3}{100}, -\frac{\ln(25)}{16}\right)\).
  9. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=ln(2x+3y)z2\frac{\partial f}{\partial z} = -\frac{\ln(2x+3y)}{z^2}.At the point (2,7,4)(2, 7, 4), fz=ln(4+21)16=ln(25)16\frac{\partial f}{\partial z} = -\frac{\ln(4+21)}{16} = -\frac{\ln(25)}{16}.The gradient vector at the point (2,7,4)(2, 7, 4) is \(\newlineabla f = \left(\frac{1}{50}, \frac{3}{100}, -\frac{\ln(25)}{16}\right)\).The maximum rate of change occurs in the direction of the gradient vector. So, we need to find the magnitude of the gradient vector to get the maximum rate of change.
  10. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=ln(2x+3y)z2\frac{\partial f}{\partial z} = -\frac{\ln(2x+3y)}{z^2}.At the point (2,7,4)(2, 7, 4), fz=ln(4+21)16=ln(25)16\frac{\partial f}{\partial z} = -\frac{\ln(4+21)}{16} = -\frac{\ln(25)}{16}.The gradient vector at the point (2,7,4)(2, 7, 4) is \(\newlineabla f = \left(\frac{1}{50}, \frac{3}{100}, -\frac{\ln(25)}{16}\right)\).The maximum rate of change occurs in the direction of the gradient vector. So, we need to find the magnitude of the gradient vector to get the maximum rate of change.The magnitude of the gradient vector is |\(\newlineabla f| = \sqrt{\left(\frac{1}{50}\right)^2 + \left(\frac{3}{100}\right)^2 + \left(-\frac{\ln(25)}{16}\right)^2}\).
  11. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=ln(2x+3y)z2\frac{\partial f}{\partial z} = -\frac{\ln(2x+3y)}{z^2}.At the point (2,7,4)(2, 7, 4), fz=ln(4+21)16=ln(25)16\frac{\partial f}{\partial z} = -\frac{\ln(4+21)}{16} = -\frac{\ln(25)}{16}.The gradient vector at the point (2,7,4)(2, 7, 4) is \(\newlineabla f = \left(\frac{1}{50}, \frac{3}{100}, -\frac{\ln(25)}{16}\right)\).The maximum rate of change occurs in the direction of the gradient vector. So, we need to find the magnitude of the gradient vector to get the maximum rate of change.The magnitude of the gradient vector is |\(\newlineabla f| = \sqrt{\left(\frac{1}{50}\right)^2 + \left(\frac{3}{100}\right)^2 + \left(-\frac{\ln(25)}{16}\right)^2}\).Calculating the magnitude: |\(\newlineabla f| = \sqrt{\left(\frac{1}{2500}\right) + \left(\frac{9}{10000}\right) + \left(\frac{\ln(25)^2}{256}\right)}\).
  12. Calculate magnitude: Next, we find the partial derivative of ff with respect to zz: fz=ln(2x+3y)z2\frac{\partial f}{\partial z} = -\frac{\ln(2x+3y)}{z^2}.At the point (2,7,4)(2, 7, 4), fz=ln(4+21)16=ln(25)16\frac{\partial f}{\partial z} = -\frac{\ln(4+21)}{16} = -\frac{\ln(25)}{16}.The gradient vector at the point (2,7,4)(2, 7, 4) is \(\newlineabla f = \left(\frac{1}{50}, \frac{3}{100}, -\frac{\ln(25)}{16}\right)\).The maximum rate of change occurs in the direction of the gradient vector. So, we need to find the magnitude of the gradient vector to get the maximum rate of change.The magnitude of the gradient vector is |\(\newlineabla f| = \sqrt{\left(\frac{1}{50}\right)^2 + \left(\frac{3}{100}\right)^2 + \left(-\frac{\ln(25)}{16}\right)^2}\).Calculating the magnitude: |\(\newlineabla f| = \sqrt{\left(\frac{1}{2500}\right) + \left(\frac{9}{10000}\right) + \left(\frac{\ln(25)^2}{256}\right)}\).Simplifying the magnitude: |\(\newlineabla f| = \sqrt{\left(\frac{1}{2500}\right) + \left(\frac{9}{10000}\right) + \left(\frac{\ln(5)^4}{256}\right)}\).

More problems from Find derivatives using the quotient rule II